File No. S360-29
Order No. GC33-2002-2

Systems Reference Library

IBM System/360 Conversion Aids:
FORTRAN IV-to-PL/I Language Conversion Program
for IBM System/360 Operating System

Program Number 360C-CV-710

The System/360 FORTRAN IV-to-PL/I Language
Conversion Program (LCP) assists in the transi-
tion to PL/I by converting FORTRAN IV programs
into PL/I programs. The LCP is distributed in
object module form for inclusion in the user's
system library.

The user should have an understanding of the
System/360 Operating System and be familiar
with the following publications:

IBM System/360 FORTRAN IV Language, Form
C28-6515

IBM System/360 Basic FORTRAN IV Language,
Form C28-6629

IBM System/360 Operating System, PL/I (F)
Programmer's Guide, Form C28-6594

A Guide to PL/I for FORTRAN Users, Form
C20-1637

IBM System/360, PL/I Reference Manual, Form
C28-8201

Second Edition (January 1973)

This is a revision of GC33-2002-1, It incorporates changes issued
in the following Technical Newsletters:

N33-7002 (dated October 4, 1968)
N33-7004 (dated January 15, 1969)
GN33~7007 (dated August 13, 1970).

Specifications contained herein are subject to change from time to
time, Any such change will be reported in subsequent revisions or
Technical Newsletters,

This publication was prepared for production using an IBM computer
to update the text and to control the page and line format. Page
impressions for photo-offset printing were obtained from an IBM
1403 Printer using a special print chain,

Copies of this and other IBM publications can be obtained through
IBM Branch Offices.,

A form for reader's comments appears at the back of this publication.
Address any additional comments concerning the contents of this
publication to: IBM France, Centre d'Etudes et Recherches,
Programming Publications, 06610 - La Gaude, France,

© Copyright International Business Machines Corporation

INTRODUCTION <« o o o o « o o o o o o o &
Source Language « « « + « o o « s o ¢ o« @
Output Language . . . e s 4 a2 & s o e @
Distribution of the LCP c e s e e e e e
Sample Progral . « « « « « « o o o« o « &
System Requirements . « « ¢« ¢ ¢ o ¢ ¢ o o
Control Informatiol « « « ¢ o o o o o « =«
General Description of the LCP

Characteristics of FORTRAN Programs to be

LCP Actions - - . - L] - - L] - . - L] L] -
Use of the Output Listing . « « « « « .
PerfOrmance « « « ¢ « o « o s o« o o o @
Notation Used in This Document

GENERAL PROBLEMS IN CONVERTING TO PL/I .
FORTRAN Mathematical Function Subprogran
Prevention of Name Conflicts
Arrangement of Arrays in Storage

CCNVERSION ACTIONS ¢ ¢ ¢ « o o o o« o o @
Data Set Terminology =« « o o s o o o «
Form of Coding Examples . . . « « « o+ &

General Considerationls .« « ¢« « o « « + «
Blanks within Words . « « « « « o o o
Comments .+ « « « « « =

Elements of the Language . . . « « « . .
Program UNit « ¢ « o o s o o o o s a @
Statement NUMberS « « « « o o ¢ o o o«
Integer Constants « « « o ¢« « ¢« & o .« &
Real Constants .« <« ¢ ¢ ¢ ¢ o « o o o @
Complex Constants . . « « « . . . o« e
Logical Constants « o « « « « « « « o« &
Literal Constants « o o o o o o o s
Hexadecimal Constants e e s s s e s e @
Subscripted Variables . « « ¢ & « & o«

Arithmetic EXPressionNsS .« « « « o o o « «

Logical EXPreSSioNsS + « « o « = « « « o &
Logical Assignment Statements
Arithmetic Assignment with Truncatlon
Control Statements « o« « « o o o « o o @
Unconditional GO TO Statement
Computed GO TO Statement . . « « « &

ASSIGN and Assigned GO TO Statements .
Arithmetic IF Statement
Logical IF StatemeRt . + « « o o o « &«
DO Statement . « o« o « o o o ¢ o o o @
CONTINUE Statement .« « o« o« o o o« o o @
PAUSE Statement . ¢« ¢ « o « o o o « o o
STOP Statement .« . o ¢ o ¢« ¢ ¢ ¢ o o &
END Statement e o e o e
Specification Statements « « o o s s @
Predefined Specification . . . « « . .
IMPLICIT Statement . . ¢« ¢« ¢« ¢ ¢ « o o
Explicit Specification Statement . . .
DIMENSION Statement . . « « ¢ o o« &« « &
COMMON Statement .« o« ¢ ¢« @ ¢ o ¢ ¢ o @

EQUIVALENCE Statement « « « « ¢« « « o« &

Common Variables Appearing in an Equivalence Statement

Statement FUNcCtions . . « ¢« « ¢ o o + o @

from REAL

Converted

CONTENTS

FUNCTION Subprograms =« « o« o« o o
SUBROUTINE Subprograms .« « « .« «
ENTRY Statement . « o <« « o« o«

. . . . ¢ o « e e . ¢«
- « e . - - - - « e . « o
. . « . . e e e - - e« = « e « e

RETURN Statement in a Subroutine Subprogram . « « « « o« o « o« «

CALL Statement . ¢« ¢ ¢ « « « &
EXTERNAL Statement . . « « . &
BLOCK DATA Subprogram « « « « «
DATA Initjalization Statement .
DOUBLE PRECISION Statement . .
Service Subprograms « 4 s e e
Input/Output Statements

READ Statements « « « o o o o @
PRINT Statement « « « ¢ o« ¢ o &«
PUNCH Statement « « o« o « o« o @
WHRITE Statement . « « « o o« o
FORMAT Statement . . « « o« « «

Numeric Format Items . . .

Scale Factor .« « « o« o o o o
Logical Format Item . . .
Character-String Format Iten
Generalized Format Item . . .
Hexadecimal Format Item . . .
Literal Data and H-Format
Control Format Items

END FILE Statement . . « « . .
REWIND Statement . o« « o o o« =«
BACKSPACE Statement . « « « « &

CONVERSION OUTPUT AND MESSAGES .
ListiNg « o ¢ o o o ¢ o o o o o o

MesSSagesS « 4 ¢ 4 e 0 e e e o e
Output L] - . L] . . L . . . L] - .

APPENDIX A. CORRESPONDING FORTRAN

APPENDIX B. CONVERSION OF FORTRAN

APPENDIX C. LCP RESTRICTIONS . .
APPENDIX D. DISTRIBUTION OF THE
Programs on Disk Pack
Contents of the Disk Pack .
Creating the Load Module .
Programs on Tape .« « « o o« o«
Contents of the Tape . . .
Creating the Load Module .
Using the Function LBLNK . . .

APPENDIX E. OPERATING PROCEDURES
Executing the LCP « « « &
Control Card Options . . « « . .
EXEC Card Options
LCP Control Cards « « « « « «
Executing the PL/I Target Program
APPENDIX F. MESSAGES . & « o «
APPENDIX G: PREPARATION OF DATA .

APPENDIX H. SAMPLE PROGRAM . . .

Code

AND PL/I BASIC SYMBOLS« &

MATHEMATICAL FUNCTION SUBPROGRAMS

. - e e e e - - . - - . . . « e
. . . . L] ® . . . e
. . - . e . . - - s o
. e e - . . « e = » . . . - . »
. . e o . -) L) . - “
* L) o o e o e« o . - s
L) . " e « ¢« e . . e
. - . - - - e e e . - « e
- . e - - - -
e« o . . - 0 - - . . . - . e - s e
. . . . e . . - - L) - . e . . . e
- - - - - . . - . - . - o« . - -«
. - . o e . - - . . - - - - - . -
L] . . . o e e . . . -
. . - . e e e -
. « e . - - e - - .

TABLES

Table 1.

Table 2.

Logical Data Sets Required by the LCP for a
Conversion RUn . . . « ¢ & & & o « o o« &
Type and Length Specification Conversion .

The FORTRAN IV-to-PL/I Language Conversion Program, referred to in this
publication as "the LCP," is a program provided by IBM to assist its
customers in the transition from FORTRAN IV to PL/I. The LCP can be
added to the user's System/360 Operating System program library to help
him convert his FORTRAN IV source programs into PL/I programs. The
resulting PL/I program is referred to as the PL/I "target" progranm.

The LCP does the following:

e It recognizes and converts FORTRAN IV statements into PL/T state-
ments having the same meaning and effect.

e It detects and flags FORTRAN IV statements that have no PL/I equiva-
lents or that cannot be meaningfully or unambiguously translated
into PL/I statements.

e It produces an output listing of the PL/I program as well as mes-
sages providing information on the conversion actions. The user may
specify that the listing also contain the original FORTRAN IV
statements.

e It produces, when specified to do so by the user, the converted pro-
gram on cards, or as card images on tape or on disk.

In certain programs, limited manual changes will be necessary to make
the generated PL/I program compilable and faithful to the FORTRAN IV
source program. In such cases, the user will be guided by output-
listing messages.

SOURCE_LANGUAGE

The LCP processes programs written in System/360 Operating Systenm
FORTRAN IV language. It will, therefore, process the output of the cur-
rent FORTRAN II to System/360 Operating System FORTRAN IV Language Con-
version Programs for the IBM 1401 (see IBM System/360 Conversion Aids:
FORTRAN II Lanquage Conversion Program_for the IBM 1401, Form C28-6560).

Moreover, the LCP will convert FORTRAN IV source programs written for
current IBM systems other than the System/360. When such source pro-
grams are converted, however, the user should note the two following
points:

1. From the point of view of language, all FORTRAN IV source programs
can be converted by the LCP, subject to the restrictions indicated
in Appendix C.

2. There is no guarantee that the converted programs will be correctly
executed. This is due to differences in implementation between
System/360 and other current IBM systems (storage allocation, mag-
nitude of data, etc.).

Introduction 7

OUTPUT_LANGUAGE

The LCP converts source programs into System/360 Operating System PL/I
language for compilation by the PL/I (F) compiler version 4 and the fol-
lowing versions.

DISTRIBUTION OF THE_LCP

The LCP will be distributed in object module form for inzlusion in
user's system library.

SAMPLE_PROGRANM

The disk pack or the tape distributed by IBM will contain, in addition
to the LCP, a sample program, written in FORTRAN. This program is
described in detail in Appendix H.

SYSTEM REQUIREMENTS

The machine requirements depend on the type of run to be made: a con-
version run or a link-editing run for generating the LCP load module.

The minimum System/360 confiquration required for a conversion run by
the LCP is:

e One System/360 Model 40 with 128K bytes of main storage. The LCP
itself needs a minimum of 70K bytes to operate in a PCP or MFT
environment. The 70K bytes include the Data Management Routines and
buffers. To use the LCP with MVT, it is suggested that 6K be added
to the SIZE chosen so as to obtain the REGION specification.

e Standard instruction set

e Decimal Arithmetic feature

e Floating-Point Arithmetic feature

e Minimum peripheral equipment required by the Operating System
The logical data sets used by the LCP are shown in Table 1. Note

that when these data sets are on DASD, they may be placed on the same
volume as the system residence.

Table 1. Logical Data Sets Required by the ICP for a Conversion Run

Punch, DASD

11SYSPCH is required only for punched-card output (or card image
| on magnetic tape or DASD) of the converted program.
[

v v v 1
1 DATA SET i FONCTION | NFVICF OPTINNS]
L i | 1 ¥ |
AJ v Al
1 SYSIN] Source Tnput | ™agnetic Tape Unit, Card |
| | ! Reader, Direct Access |
] | | Storage Device (DASD) |
1 1 1 3
¥ v v 1
! SYSIOFRR 1 Message Output ! Magnetic Tape Unit, |
! | ! Printer, DASD]
F 4 + J
| SYSPRNT | Listing Output | ®™agnetic Tape Unit, !
| ! ! Printer, DASD !
* + 4 4
| SYSUT1 1 Auxiliarvy Storage | DASD]
| sSYSUT?2 | Auxiliarvy Storage | DASD \
L. 31 3 & |
[4 A\ J p g v
! SYSPCH1 | Deck Output ! Magnetic T™ave Unit, Card 1|
| ! !
! ! !)
| T

1

!

]

For generation of the LCP load module, an additional 2?11 Disk
Storage Drive or magnetic tape unit is required to run the Aistrihuted
program.

In order to generate the LCP load module and/or execute a conversion
run, the Operating System must include the modules for the PL/T (F) com-
piler and its library.

NTROL_INFORMATION

:

A conversion run requires control cards prepared by the user, specifving
which of the options provided by the LCP he has chosen. The control
cards required and the options available are described in Appendix %,

ERAL_DESCRIPTIQN OF THE LCP

g

The LCP is designed to do a maximum amount of conversion. It provides a
number of options that permit the user to apply it effectively to a wiAde
range of conversion needs.

The program is particularly versatile in the following respects:

e Messages in the output listing identify statements that cannot be
converted and those that, once converted. may give incorrect results
on execution.

e In addition to the printed listing, the converted output may also
appear on cards, magnetic tape, or DASD.

e The PL/I program can he generated in either the 48~ or the 60-
character set, depending on the character set used in the source
progranm.

e Optionally, the FORTRAN source program can be listed.

e The user can specify the size of main storage available in the
machine used for conversion.

Introduction 9

e A character code option (BCD or EBCDIC) is provided, which remains the
same for input and for output. :

CHARACTERISTICS OF FORTRAN PROGRAMS TO BE CONVERTED

1 source program to be converted by the LCP must be error-free; that is,
source program statements must conform to the specifications for System/
360 Operating System FORTRAN IV,

The source program can be in the form of punched cards or of 80-
character (blocked or unblocked) card images on tape or on DASD.

Source programs should be converted by the LCP before any hand
changes are made. This makes the best use of the LCP and avoids incor-
rect conversion caused by coding errors.

All FORTRAN source programs and subprograms are converted independ-
ently, except BLOCK DATA subprograms, which must immediately precede the
main program to which they belong. Within a single given batch of
FORTRAN programs, the user need not insert new LCP control statements
unless he wishes to change original LCP control information.

LCP ACTIONS

The LCP analyzes each statement of the FORTRAN source program and takes
one of three types of action:

e Full Conversion: The LCP converts the statement completely into a

PR A LA

form acceptable to the PL/I (F) compiler.

e Conversion, with Warning: The statement is converted into a form
acceptable to the PL/I (F) compiler. However, the execution of the
target program may give results that are not equivalent to those
obtained by the execution of the FORTRAN-compiled source program. A
warning message is issued.

e No_Conversion, with Warning: When a source program statement cannot
be converted, a message identifies the statement and gives tha
reasons for non-conversion.

A list of restrictions is given in Appendix C.
USE OF THE OUTPUT LISTING

The output listing from the LCP always contains the converted statements
and all messages that have been generated. Optionally, it may also con-
tain the source program statements.

Using the output listing, the programmer can analyze the conversion
and determine whether any manual changes are required. The necessary
modifications can be made in the output deck. The deck is then ready
for compilation by the PL/I (F) compiler.

10

PERFORMANCE

On a System/360 Model 50 with 128K bytes of main storage, the average
conversion time (T) for a FORTRAN program containing N cards is given in
the following formula (in seconds):

T=55+37%S+0.75%N
where S is the number of subprograms

The time given is that which is applicable when the user has speci-
fied the options SOURCE and DECK in his EXEC card, thus requiring the
source program to be listed on SYSPRNT and the target program to be
punched on SYSPCH. The devices to be used are as follows:
2540 Ccard Read Punch for SYSIN
1403 Printer for SYSPRNT
2540 Card Read Punch for SYSPCH

When SYSIN, SYSPRNT and SYSPCH are 2401 Magnetic Tape Units (Model
3):

T=55+37%S+0.60%N

NOTATION USED IN THIS DOCUMENT

The object of this paragraph is to provide a simple way of describing
the conversion process, and not a comprehensive theory of languages.

In order to present the general form of a source language statement,
as well as that of its target language equivalent, the following syn-
tactic notation is used.

A syntactic_variable of a language is used to represent one element
of a particular set of elements of the language that have the same syn-
tactic function. The range of values of a syntactic variable is there-
fore the set of elements.

In FORTRAN, for example, the statement numbers constitute a set of
elements that have the same syntactic function. The corresponding syn-
tactic variable has as its range of values the set of all possible
FORTRAN statement numbers (each a sequence of from one to five decimal
digits).

For the purposes of this publication, a syntactic variable is given a
name, made up of a finite sequence of characters, which is a mnemonic
representation of the corresponding syntactic function, e.g.:

statement number
In order to differentiate between syntactic _variables that are not

part of the language and basic_symbols of the language, syntactic
variables are enclosed in corner brackets , e.g.:

<{statement number>
In addition, some keywords of the language (GO TO, IF, etc.) are

used in connection with syntactic variables. For example, the FQORTRAN
arithmetic IF statement is written as follows:

Introduction 11

IF (Karithmetic expression>)<statement number>,<statement number>,
<statement number>

When it is necessary to specify different values of a given syntactac
variable, numeral suffixes are used. In order to specify in the example
shown above that the three statement numbers are different, the follow-
ing notation is used:

IF (Karithmetic expression>)<statement number 1>,<statement number 2>,
<statement number 3>

The operator conv is used to denote the result of the converS1on of a
FORTRAN syntactlc variable into its PL/I equivalent:

conv<FORTRAN syntactic variable>

For example, the format of the FORTRAN unconditional GO TO statement
and that of its PL/I equivalent are represented as follows:

GO TO<statement number> and GO TO conv<statement number>

The operator "conv" is sometimes omitted when there is no risk of
confusion.

12

GENERAL_ PROBLEMS IN CONVERTING TO PL/I

Conversion from FORTRAN IV to PL/I involves several general problems due
to differences between the two languages.

The sections that follow address these problems and note those which
the LCP can solve.

FORTRAN MATHEMATICAL FUNCTION SUBPROGRAM

The table in Appendix B shows the correspondence between thz PL/I built-
in function names and the FORTRAN IV mathematical function subprogram
names.

Normally, the name of each FORTRAN IV mathematical function subpro-
gram in the source program is changed to the corresponding PL/T built-in
function name, except when suppression of such conversion has been indi-
cated in an LCP control card (see Appendix E). For example, the func-
tion IABS is normally converted to ABS wherever it appears.

PREVENTION OF NAME CONFLICTS

To avoid name caonflicts, the LCP provides an LCP substitution name in
the following cases:

1. COMMON block name
The name is lengthened 7 characters by concatenating ths first
characters of the word COMMON with the original common name (see
the COMMON statement).
2. Other symbolic name
The LCP checks each name written by the user agaiast
e a list of PL/I built-in function names which are different in
FORTRAN or which are used for conversion by the LCP, namely,
LOG, LOG10, TRUNC, MAX, MIN, FIXED, IMAG, BINARY
e the operators of the 48-character set, if this option is
selected, namely, GT, GE, NE, LT, LT, OR, AND, NOT, NL, NG,
CAT, and PT
If they match, a suffix <name-tail> is added to the name specified
by the user. The value given to <name-tail> is as many characters
of the string VARFUN as are required to make the substitution name
seven characters long. For example, LO5 will become LOGVARF, and
GE will become GEVARFU. Optionally, a list of such source names
and their corresponding LCP substitution names can be provided in
the output listing.

General Problems in Converting to PL/T 13

The manner of storing arrays differs in FORTRAN and in PL/I.

The FORTRAN convention is that the elements of an array are stored in
ascending locations, with the value of the first subscript varying most

22— 223

The PL/I convention is the inverse of that for FORTRAN: the elements
of an array are stored in ascending locations, but the value of the
first subscript varies least rapidly, and the value of each subscript
varies more_rapidly than that of its predecessor. Thus, a two-

To conform with the PL/I convention for array storage, the LCP makes
the necessary conversion, as shown in the following example:

Original

DIMENSION A(3,4,5,6)

...} = 4(1,2,3,4)

Converted

DECLARE A(6,5,4,3) FLOAT BINARY;

...} = A(4,3,2,1);

14

CONVERSION ACTIONS

The components of the FORTRAN IV language are discussed in approximately
the order in which they are described in the publication IBM_System/360
Operating System FORTRAN IV, Form C28-6515, i.e., under the following
headings:

e General considerations

e Elements of the Language (Constants, Variables, Arrays)

e Arithmetic Expressions

e Logical Expressions

e Assignment Statements

e Control Statements (DO, GO TO, IF, etc.)

e Specification Statements (COMMON, DIMENSION, EQUIVALENCE, etc.)

e Statement Functions

e Function and Subroutine Subprograms

e Other FORTRAN statements accepted by the System/360 Operating System
FORTRAN IV compiler

e Service Subprograms
e Input/Output Statements (READ, WRITE, FORMAT, etc.)

The LCP does not convert certain FORTRAN statements that are incom-
patible with PL/I. These statements are identified in the iiscussion of
the category to which they belong.

DATA SET TERMINOLOGY

The terms "data set" and "data set reference number" are used in the
discussion of input/output statements. In System/360 Operating System
programming, the term "data set" refers to a named collection of data.
A given data set may reside on one or more input/output units. A "data
set reference number" refers to the data set itself, without regard to
the input/output unit (or units) on which it resides.

FORM OF CODING EXAMPLES
Coding examples illustrate how the LCP converts a statement. The format

of these examples is:

Qriginal
FORTRAN coding as it would appear in the source progranm

Converted

— e e i e

Coding as it would appear in PL/I output from the LCP

Conversion Actions 15

Note that the LCP output displayed or discussed in this manual is
assumed to be in the 60-character set version of PL/I. Thus, a semico-
lon is represented as it is on a standard typewriter keyboard, the rela-
tionship "less than" by the character < , etc. Each example or discus-
sion, however, remains valid with respect to the #48-character set ver-
sion of PL/I when all necessary replacements are made. For example, the
following statement in the 60-character set:

W THEN IF W<P
THEN Y = 1; ELSE P ELSE;

A: IF X>Y THEN IF 2
ELSE X =4; J : Z =

Q
5

.o weo

would read, in the #48-character code version:

A.. IF X GT Y THEN IF Z = W THEN IF W LT P
THEN Y 1,. ELSE P =Q,. ELSE,.
ELSE X 4,. J.. Z = 5,.

GENERAL_CONSIDERATIONS

BLANKS WITHIN WORDS

FORTRAN IV permits embedded blanks. The LCP removes such embedded
blanks except when they occur within literal constants.

ina
TAL = A + B + 72 .01 92E-2

Converted

=

TOTAL=A+B+72.0192E-2;
COMMENTS

All comments appearing in the FORTRAN program will be converted. The %/
character sequence, where it occurs in the source program, will be con-
verted into the x- sequence. Note that card columns 73 through 80 are
not significant to the FORTRAN compiler and may be used for various pur-
poses. The LCP ignores the contents of these columns and inserts an
identification number in the PL/I target progran.

Original

C THIS IS A /#«COMMENTx%x/
Converted

/% THIS IS A /%COMMENTx-x/

16

PROGRAM UNIT

A FORTRAN main program is converted to a PL/I main procedure. The fol-
lowing PL/I statement is created first, even if BLOCK DATA subprograms
are placed before the main program:

(NOZERODIVIDE) : MAINPRO:PROCEDURE OPTIONS (MAIN) ;

A FORTRAN subprogram is converted to a PL/I external procedure (see
FUNCTION and SUBROUTINE statements).

The condition NOZERODIVIDE is created to simulate the effect of
FORTRAN division by zero.

STATEMENT NUMBERS

If <statement number> has as its value a source program statement num-
ber, the LCP converts it into the PL/I statement label:

conv<statement number>

where conv<statement number> is EXTLAB followed by <statement number>
without leading zeros.

02045 A=BxxC

Converted

EXTLAB20U45:A=B%x*C;

INTEGER CONSTANTS

FORTRAN integer constants appear in the PL/I conversion in the same form
as in the source text, after elimination of embedded blanks.

——— s e s e i s e

If FORTRAN integer constants appear as arguments passed to a
subroutine or as arguments of a function, binary conversion is forced by
using the built-in function BINARY at the time the function or subpro-
gram is called.

CALL SUB(472)

Converted
CALL SUB(BINARY (472));:

Conversion Actions 17

REAL CONSTANTS

The following rules apply in the conversion of real constants:

Embedded blanks are suppressed.

D is changed into E.

Trailing zeros are added, where necessary, to double-precision cons-
tants to make up the required seven significant digits.

The exponent E0 is added as a suffix to decimal real constants with
no exponent part.

e The built-in function FLOAT is used to force the conversion of

FORTRAN single-precision real constants containing seven significant
digits into PL/I single-precision floating-point constants.

e v e ———

7

634 E- 7

Converted

33671312.507941E+63

Original

1.234567

Converted

FLOAT (1.234567E0, 6)

COMPLEX CONSTANTS

The same rules apply as for the conversion of real constants, with the
following additions:

e A comma followed by a sign is suppressed, otherwise it is replaced

by a + sign.

The letter I is added as a final suffix.

Original
(-4. 7D+2,1.9736148)

Converted
(4. 700000E+2+1.9736 148E0T)

18

LOGICAL CONSTANTS

A FORTRAN logical constant has one of two forms:
«.TRUE. or .FALSE.

.TRUE. is converted to *1'B, .FALSE. to '0'B.

A.AND..TRUE.

Conyverted

A&'11'B

LITERAL CONSTANTS

FORTRAN literal constants are reproduced without change in the PL/I
output.

‘DON''T PRINT /X-COORDINATE'

Converted
‘DON''T PRINT /X-COORDINATE!

FORTRAN literal constants should not be passed as actual parameters
to subprograms. Should this happen, however, a warning message will be
issued to the user.

HEXADECIMAL CONSTANTS

Hexadecimal constants are not converted.

SUBSCRIPTED VARIABLES

If the operator / or *x or a left parenthesis appears in a subscript, a
warning message will be issued. It is the user's responsibility to
check whether the converted subscript is correct, e.g., insert TRUNC for
integer division, invert the order of subscripts for a subscripted vari-
able appearing in a subscript.

ARITHMETIC EXPRESSIONS

FORTRAN arithmetic expressions undergo the following modifications:
e Elimination of blanks embedded in constants and identifiers
e Generation of LCP substitution names, where necessary

e Conversion of the exponent D into the exponent E

Conversion Actions 19

e Addition of trailing zeros
e Addition of the exponent part EO, where necessary

e Use of built-in functions TRUNC, BINARY, FLOAT

Original
CEIL%% (ABE+2) /7 .98D- 1

Converted

CEIL%% (ABE+2) /7.980000E~1

The built-in PL/I function TRUNC is used to force the results of
division of PL/I fixed-point expressions to be of the same precision as
the results of division of FORTRAN IV integer expressions.

The results of arithmetic expressions may differ from the expected
results, owing to differences in the implementation of (1) precisions
and (2) conversion of mixed characteristics.

For exponentiation, FORTRAN IV produces type integer if base and
exponent are integer items; this is not always the case with PL/I. Note
that, in this case, the conversion of FORTRAN integer arithmetic expres-
sions containing exponentiation is not always correct.

LQGICAL EXPRESSIONS

owing to differences between FORTRAN and PL/I in the relative priorities
of operators, the LCP always inserts an additional pair of parentheses
around the converted form of the expression dependant on the FORTRAN
«NOT. operator.

original
(E+9.5D2.GE.2%E) «OR. (L. NE. 3. 1“E-1)

Conv d

Converte
(E+9.500000E2>=24E) | (L4=3. 14E~ 1)

Original
(A%%F.GT.ROOT) «AND..NOT. (I.EQ.E)

Converted

(A%*F>RO0OT) 64 ((I=E))
original
A GT.Dx%B.AND..NOT.L.OR. N

Converted

et e e s o s o

riginal
.AND..NOT. X+¥xZ.LE. SIN(Z) .OR.P

Original
A.AND..NOT. (B.OR..NOT.C.EQ.E)

Converted

- e e

AG+ ((Bl4 (C=E)))

Qoriginal
.NOT. (A+B) «GT.C

LOGICAL ASSIGNMENT STATEMENTIS

G=.TRUE.

Converted

original
BOOL (I,J) = (A**F.GT.ROOT) .AND..NOT.P

Converted

BOOL (J, I)=(A%%F>RO0OT) &4 (P) ;

ARITHMETIC ASSIGNMENT STATEMENTS

——— e —

¥Y=Cxx* (-Y) /.3000000E-5;

Arithmetic_Assignment with Truncation from REAL to INTEGER

The value of an expression of type REAL is obtained using implsamentation
defined precision which gives an interval that includes the true value.
If this interval contains an integer value, the result of truncation is
undefined.
For example:
2.000001 will give 2
for a true value of 2

1.999998 will give 1

Conversion Actions 21

The above is valid when using a language for which there are several
implementations. It is all the more applicable when going from one lan-
guage to another with a different implementation defined precision, even
if this difference is slight.

A warning message will be issued.

CONTROL_STATEMENTS

UNCONDITIONAL GO TO STATEMENT

FORTRAN Syntax
GO TO <statement number>

PL/I Syntax
GO TO EXTLAB<statement number>;

COMPUTED GO TO STATEMENT

For each computed GO TO statement, the LCP creates a one-dim=nsional
array of the same size as the argument vector of the GO TO, with ele-
ments that are, in order, the statement numbers themselves. Thus, for
the i-th GO TO statement taking the form shown, an array BRANCHi is
'generated and a PL/I declaration is created giving the following
information:

e The dimension (n) of BRANCHi
e The LABEL attribute for BRANCHi

¢ The values of the elements of BRANCHi; that is, the converted state-
ment numbers

FORTRAN Syntax
GO TO (<statement number 1>,...,<statement number n>),<index>

where <index> has as its value an unsubscripted integer variable, with
values ranging from 1 to n.

EL/I_Syatax

<label part> IF(<index> LE n AND <index> GT 0) THEN GO TO
BRANCHi (<index>),.

where <label part> is empty or takes the form EXTLABm.. (To avoid con-
fusion, the above example is shown using the 48-character set.)

Thus, should the value of <index> fall outside the dimension of the
array BRANCHi, the GO TO statement is not executed, and control passes
to the following statement.

GO TO (25,10,7),ITEN

22

Converted (48-character)
DECLARE BRANCH (3) LABEL INITIAL(EXTLAB25,EXTLAB10,EXTLAB7),.
[]
[]
L]

EXTLAB..IF (ITEM LE 3 AND ITEM GE 0) THEN GOTO BRANCHO1(ITEM), .

ASSIGN AND ASSIGNED GO TO STATEMENTS

FORTRAN_ Syntax
ASSIGN <statement number>TO<unsubscripted integer variable>

¢ oo

GO TO <unsubscripted integer variable>, (<statement number 1>,...,
<{statement number nd>)

PL/I Syntax
<unsubscripted integer variable>=EXTLAB<statement number>;

GO TO <unsubscripted integer variable>;

Note: <unsubscripted integer variable> is given the LABEL attribute in
a generated declaration unless this item appears in a specification
sStatement in the FORTRAN program. A conflict will result when this item
is used as an integer variable elsewhere in the program. Warning mes-
sages to that effect are issued for the converted ASSIGN and assigned
GOTO statemenats.

ARITHMETIC IF STATEMENT

FORTRAN Syntax
IF (<arithmetic expression>)<statement number 1>,<statement number 2>,
<statement number 3>

IF (<arithmetic expression>) =0 THEN GO TO conv<statement number 2>;
ELSE IF (<arithmetic expression>)>0 THEN GO TO conv<statement number 3>;
ELSE GO TO conv<statement number 1>;

If the label of the statement following the arithmetic IF statement
is one of the three transfers, or if two of these three labels are the
same, the conversion is optimized.

Original
IF (A(J,K) *%3-B) 10,4,30
4 D=B+C
[]
L]
[]
30 C=D%x%2

10 E= (FxB) /D+1

Conversion Actions 23

Conyerted
IF (A(K,J) %*x3-B)<0 THEN GOTO EYTLAB10;
ELSE IF(A(K,J) x%x3-B)>0 THEN GOTO EXTLAB3O;
EXTLABU: D=B+C;
. L]
[]
L]

LOGICAL IF STATEMENT

FORTRAN_Syntax
IF (<loqicaI expression>) <statement>

PL/I_Syntax

Note: If <statement> is STOP<integer part> and <integer part> is an
integer constant, the PL/I Syntax is:

IF(<logical expressiond) ™EN DOj;<statement>; END
DO STATEMENT

PORTRAN_Syntax

Do<statement numher><DO0 var>=<initiald>,<finald><increment>
<statements within the range of the DO>

In either of the two cases illustrated below, <increment option> is
empty if <increment> is empty, or is RY <steo> if <increment> is
<stepd.

1. Both <initial> and <final> have unsigned integer constants as their
values.

a. <initial> does not exceed <finald>.

BL/1_Syntax

DOKDO var>=<initiald>To<finald><increment optiond;
conv<statements within the range of the NO>:
END;

be <initiald> exceeds <final>.

PL/I_Syntax
DOLKDO var>=<initiald>;

conv<statements within the range of the DO>:
END;

2. Either <initial> or <final> has an integer variable as its value.

PL/I_Syntax .

DO<DO var>=<initiald>T™0 MAX(<initial>,<finald)<increment ovntiond>;
conv<statements within the range of the DO>;

END;

Note: Whereas, in specific cases, FORTRAN allows a *ransfer out of the
range of an innermost DO loop and a transfer back into the range of the
loop, PL/I does not. (The PL/I (F) compiler will diagnose these trans-
fers at compilation time.) The user should therefore ensure that his

program contains no such transfer, and make the necessary hand changes.

24

CONTINUE STATBHENT

FORTRAN_sSyntax
<state§ent number> CONTINUE

-Syntax
<label part><continue partd

where <label part> is empty, <continue partd is ¢ and {f {(statement num-
ber> is empty. Otherwise, <label part> is EYTLABSstatement number>:
and <continue part> is ;

PAUSE STATEMENT

ggg:ngn Syntax

PAUSE<Cmessage partd>

where <message part> is either empty, or has as its value an unsigned
integer constant or a literal constant. Thus, there are three cases to
consider:

1. <message part> is empty.

PL/ZI_Syntax
DISPLAY('PAUSE 00000*) REPLY(NEXTSTA) ;

2. <message part> is an integer constant.

BL/I Syntax
DISPLAY('PAUSE <integer constant>') REPLY (NEXTSTA) ;

3, <message part> is '<character string>'..

PL/ZI_Syntax
DISPLAY (*PAUSE <character string>?) REPLY (NEXTSTA) 3

Note: The character variable NEXTSTA is declared with the CHARACTER

attribute and a length of (60) and receives a string that is a message
to be supplied by the operator.

STOP STATEMENT

RAN_Syntax
STOP<integer partd>

vhere <integer part> is either empty or has as its value an integer con-
stant., Thus, there are two cases to consider:

1. <integer part> is empty.

In a main program:

PL/I_Syntax
RETURN;

In a subroutine or function:

PL/I_Syntax
STOP;

Conversion Actions 25

Table 2. Type and Length Specification Conversion

1In PL/Y, " the result of a comparison is a bit string of length one."
(See the section "Comparison Operations" in the PL/I language speci-
fications manual.)

-~ | v
\ TYPE \
| LENGTH ¢ - - v 3
| t LOGICAL 1 INTEGER i REAL { COMPLEY !
¢ + } 4 +)
{ 1 | BIT(1)? | | | \
L ¥ 1 'y 2 A ¥]
\ oute Al v Al A] B
\ 2 | | PIXED BINARY | | |
12 + 4 } + 4
|] { BIT(1)? { PIXED BINARY | PLOAT BINARY | 1
| ! | 3 1 ' |
k 4 } $ 4 4
| g8 | | | FLOAT BINARY | COMPLEY BINARY|
| \ | | (5% + |
t 4 } } + 4
| % | | | COMPLEY BINARY|
| | | 1 1 (51
L A 'R A A .
v
\
\
\
IS

s e e o

INPLICIT STATEMENT

origingl
INPLICIT INTEGER#2 (A-H), REAL#8(I-K), LOGICAL (L, M, N)

conversion Actijions 26,1

This page intentionally left blank

26.2

2. <integer part> is an integer constant.
In a main progranm:

tax
DISPLAY(*N');
RETURN;

In a subroutine or function:

BL/ZI _Syntax
‘DISPLAY ('N') ;3
STOP;

END STATEMENT

The LCP collects and saves the information contained in each specifica-
tion statement. Following completion of the source vrogram scan,
DECLARE statements will be generated, listing the variables referred to
in all statements and giving their types, precisions, dimensions,
initial values, etc. ‘

Note that FORTRAN integers represented in the tarqget PL/T program
vith the precision attribute (15,0) will occupy four bytes in the PL/T
version #-produced object code and two bytes in the later versions.

PREDEFINED SPECIFICATION

All variables, including the predefined FORTRAN variables, are declared
by the LCP, as shown in Table 2.

26

Assume that the only variables in the source progran affected bv this
statement are A, DF, J, and M. 1In this case, the conversion is Adone as
follows:

Converted
DECLARF A PIXED BINARY STATIC,DE FTYED BINARY STATIC,Y FLOAT™ RYNARY(53)
STATIC,M BIT(1)STATIC;

Tn the case of a function name, the type will be declared in the
RETURNS attribute.

If PUNCT is a function name, the conversion is as follows:

Converted
DECLARE FUNCT ENTRY RETURNS (FIX®D RINARY):

EXPLICIT SPECIFICAT™ION STATEMENT

Qrigipal

INTEGER%2 ITEM/76/,A(2,2) /2%6,2x1/

converted

DECLARE ITEM ‘FIXED BTNARY STATIC TNTTIAL(76),A(2,2) FTXED RTNARY
STATIC INITIAL((2)6,(2)1);

Tf the specification statement concerns a function name, the tvpe
appears in its associated RETURNS attribute.

original
REAL FPOUNCT%8

Converted
DECLARE FUNCT ENTRY RRTURNS (FLOAT BINARY(53));

DIMENSION STATEMENT

original
DIMENSION A(10), ARRAY (5,6,7)

¥:
> 0

onverte
DECLARE A(10)FPLOAT BINARY STATIC,ARRAY(7,6,5) FLOAT RYNARY STATTC;

COMMON STATEMENT

For each common block, the LCP creates a two-level structure of external
scope, in which the first item of level 2 is a dummy element which
serves to force alignment on a double word.

In the case of unlabeled common blocks, the name of the madjor struc-
ture created is UNLABCM, and the common blocks are processed backwards.
Care should therefore he exercized when initializing common block
variables using DO loops.

Tn the case of labeled common blocks, the name of the mafor structure

created will he seven characters in length, and will be made up by con-
catenating the first n characters of the word COMMON to the original

Conversion Actions °?7

common label, where n=7-(character lenqth of the oriainal lahel). ™ha
common label SY, for example, is converted into STCommq,

original
COMMON A,B,C/R/D,E/ST/F (10) //G,B/S1/1,3/R/P/ /W

Converted

DECLARE 1 STCOMMO EYT™ERNAL,

DUMITEM FLOA™ RTNARV(513),
F(10) PLOA™ RINAR™,

T FIXFD BTMARY (31),

2 J PIYED BINAP™(31):

NN N

DECLARF 1 RCOMMON FYTFPNAL,
2 DUMITEM PLOAT RTNARY(S57?),
2 D PLCAT BINARY,
2 E FLOAT RTWARY,
2 P FLGAT BINARY;

DECLARE 1 UNLARCM EVTERNAL,

DUMTTEM FLOA™ BTNARV(5?),
A FLOAT BINARY,

FLOA™ RTNARY,

FLCAT BINARY,

FLOAT BINARY,

FLOAT BINARY,

FLOAT RINARY;

NN NN
2N

Restrictions

Tn version 4, becanse of the implementation of +he PL/T (F) compiler,
the conversion of FORTRAN integer constants two bvtes in length will
result in incorrect adiressing. The user will therefore have *+o mave
the necessary correctinns.

Similar inconveniences vill appear in the conversion of logical data
and may appear for elements with the CHARACT™FR attribute.

A warning message will he issued.
EQUIVALENCE STATEMEN™

In the following example:

DIMENSTON A(15),C(20)
EQUIVALENCE (A (2),B,C(12)), (D,E,F), (2 (15),6)

each of (A(2),B,C(12)) and (D,E,F) and (A (15),F) form an equivalence
group.

Furthermore, (A(2),B,C(12)) together with (A (15) ,G) form an "eguivalence
chain," since B, C(12), and 6 are made equivalent to an element of the
array A. The group (P,F,¥) on its own also forms an eauivalence chain,
since the elements D, F, and F are not made equivalent to any other
element.

28

For each equivalence chain -- the j§=-th, say -- a one-dimensional
array, EQUBLK4, is created. This arrav is placed within a structure *to
force alignment on a double word.

Each element of the equivalence chain is placed in a two-level struc-
ture defined using FQUBLKJ, and made up of:
e A dummy element containing the position within the bhlock

e The element itself, with its attributes

conversion Actions 28.1

Note: In the interests of maximum efficiency, the method of conversion
shown here takes advantage of the facility offered by the PL/I (F) com-
piler whereby, under certain circumstances, the attributes of the
defined item may differ from those of the base identifier (see "Examples
of Defining" in Section I of the PL/I reference manual).

DIMENSION A(10),B(5,8),C(4,6,9)
EQUIVALENCE (& (3),B(2,3),C(3,4,5))

Converted:
DECLARE 1 EQUBLKO1 STATIC,
2 DUMITEM FLOAT BINARY (53),
2 DUMBASE(216) FLOAT BINARY;
DECLARE 1 ITEMOO1 DEFINED EQUBLKO1,
2 DUMITEM(2) FLOAT BINARY,
2 C(9,6,4) FLOAT BINARY,
1 ITEM002 DEFINED EQUBLKO1,
2 DUMITEM (101) FLOAT BINARY,
2 B(8,5) FLOAT BINARY,
1 ITEMOO03 DEFINED EQUBLKO1,
2 DUMITEN (110) FLOAT BINARY,
2 A(10) FLOAT BINARY;

Restrictions:
e The PL/I (F) compiler does not accept initial values for DEFINED
items. Initialization must, therefore, be done by the user.

e See "COMMON Statement."

COMMON VARIABLES APPEARING IN AN EQUIVALENCE STATEMENT

The one-dimensional array EQUBLKj is not created, and each element of
the equivalence chain is placed in a two-level structure defined using
the common nanme.

When the equivalence chain extends the size of the common block, a
level 2 dummy one-dimensional array is added to the end of the common
block.

Qriginal

COMMON A,B,C
DIMENSION D (3)
EQUIVALENCE (B,D(1))

Converted
DECLARE 1 UNLABCM EXTERNAL,
2 DUMITEM FLOAT BINARY (53),
2 A FLOAT BINARY,
2 B FLOAT BINARY,
2 C FLOAT BINARY,
2 DUMITEM2(1) FLOAT BINARY;
DECLARE 1 ITEMOO1 DEFINED UNLABCHN,
2 DUMITEM(3) FLOAT BINARY,
2 D(3) FLOAT BINARY;

Restrictions: See "EQUIVALENCE statement."

Conversion Actions 29

STATEMENT FUNCTIONS

FORTRAN_Syntax
<func> (<arg1>,...,<argn>)=<expression>

<func>:PROCEDURE (<arg1>,...,<argn>) conv<type>conv<lengspec>;
DECLARE<argi1>conv<type>conv<lengspec>,
«.ss<argn>conv<type>conv<lengspec>;
RETURN (<expression>) ;
END;

where conv<type> and conv<lengspec> are enmpty if <func> does not appear
in a specification statement.

FUNCTION SUBPROGRAMS

FCRTRAN_Syntax

<type>FUNCTION<Kfunc><lengspec> (Kargl1>,...,<argn>)
<func>=<expression>
RETURN

te e

END

where <type> and <lengspec> are optional.

PL/I_Syntax

(NOZERODIVIDE) :<func> :PROCEDURE (Kargl1>,..,<argn>,<func><name tail>);
<func><name tail>=<expression>;
RETURN;

END;

Note that no attempt is made by the LCP to simulate a FORTRAN IV call
by value; that is, a call by value of a FUNCTION or SUBROUTINE subpro-
gram formal parameter is treated as a call of that parameter by name.

Note_1: <func><name tail> is an additional parameter, creat2d by the
LCP, that simulates the effect of a FORTRAN function call, thus taking
advantage of the facilities of the PL/I (F) compiler. The value given
to <name tail> is as many characters of the string VARFUN as are
required to make the parameter name seven characters long. This para-
meter is declared according to the predefined specification or according

to the <type> or <lengspec> specified (see Table 3).

If <func> itself is replaced by a substitution name, the procedure and
the additional parameter have the same name (see "Prevention of Name
Conflicts").

Note_2: The user should keep in mind that FORTRAN IV and PL/I do not
handle adjustable dimensions in the same manner. In PL/I, the dimen-
sions of an array passed as arqument are those of the callingy progran.

meters must be equal to that of the corresponding argument.

Note_3: The number of dimensions of an array used in the list of para-

30

SUBROUTINE_SUBPROGRAMS

Original
SUBROUTINE SUB (X,%*,/Y/,Z,%4R,/S/,%)

Note: For conversion of the asterisks, see "RETURN Statement.”
SUBROUTINE SETUP

Converted

(NOZERODIVIDE) :SETUP :PROCEDURE;

Adjustable Dimensions: See Note 2 under "Function Subprograms" above.

Array_as Péramg;gg: See Note 3 under "Function Subprograms"above.

ENTRY STATEMENT

Since initialization of parameters at primary and secondary entry points
of a PL/I procedure is not generally performed in the same manner as in
FORTRAN, conversion of each ENTRY statement will take place, but a warn-
ing message will be issued.

FORTRAN_Syntax
ENTRY <entry name><arglist>

PL/I_Syntax
<entry name>:ENTRY conv<arglist>;

where:
conv<arglist> takes exactly the same form as in the SUBROUTINE state-
ment if the ENTRY statement appears in the body of a SUBROUTINE subpro-

gram, or the same form as in the FUNCTION statement if the ENTRY state-
ment appears in the body of a FUNCTION subprogran.

RETURN STATEMENT IN A SUBROUTINE SUBPROGRAN

FORTRAN Syntax
RETURN<index>

where <index> is empty or has as its value an integer constant or an
integer variable. If <index> is empty, then the converted statement is
RETURN;

If <index> has an integer value, or an integer variable value, then a
DECLARE statement is created which takes the form:

DECLARE RETARAY (p) LABEL,RETURNO1 LABEL,...,RETURNp LABEL;

where p is the maximum number of % characters appearing in the
SUBROUTINE or ENTRY statement parameter lists.

Conversion Actions 31

In addition, the RETURN <index> statement is converted to:

GC TO RETARAY (<index>);

Initialization of RETARAY is performed at the primary eﬁtry point as
follows:

GO TO EXTLABS;

RETARAY (1) :GO TO RETURNO1;

RETARAY (p) : GO TO RETURNp;
EXTLABS:;

The conversion shown takes advantage of the alternative method avail-
able for the initialization of elements of non-static variable arrays
(see the PL/I language specifications manual, chapter 4, section
entitled "Initial Attributes").

CALL STATEMENT

s e e v e e s gy S et o S W

CALL<sbrtn><arglist>

PL/I_Syntax
CALL<sbrtn> conv<arglist>;

where conv<arglist> is empty if <arglist> was empty, or takes the form
<arglist> if no statement number appears in <arglist>.

Otherwise, if &<statement number> appears, it is converted to:
EXTLAB<statement number>

Note that FORTRAN literal constants should not be passed as actual
parameters to subprograms. In the event of this happening, a warning
message is issued.

The name of the PL/I equivalent of certain FORTRAN mathematical func-
tion subprograms cannot be passed as an argument. The PL/I built-in
function names which cannot be used as arguments are: FIXED, ABS, MOD,
REAL, MAX, MIN, FLOAT, IMAG, TRUNC, COMPLEX, and CONJG. For other PL/T
built-in function names passed as arguments, the user must specify the
ENTRY attribute in order to describe their entry points properly.

Array as_Parameter: See. Note 3 under "Function Subprograms"above.

EXTERNAL STATEMENT

FORIRAN_Syntax
EXT

ERNAL<sbpgml>,...,<sbpgmp>

DECLARE<sbpgm1>ENTRY RETURNS (<type><length>),...,<sbpgmp>ENTRY RETURNS
(<type><length>);

32

BLOCK DATA SUBPROGRAM

FORTRAN_Syntax
BLOCK DATA

END

BL/L_Syntax
BEGIN;

END;

All BLOCK DATA subprograms must immediately precede the main program to
which they belong.

DATA INITIALIZATION STATEMENT

Initial values appearing in a DATA statement are placed in the
INITIAL attribute of tle corresponding variables.

When the initial values are literals, the corresponding variables are
declared as CHARACTER and must remain so throughout the progranm.

Note: Since the PL/I (F) compiler does not accept initial values for
DEFINED items, the initialization of variables in EQUIVALENCE statements
must be done by the user.

DCUBLE PRECISION STATEMENT

FORTRAN Syntax
DOUBLE PRECISION <var1><dimi1>,...,<varp><dimp>

where <vari> has as its value a variable, array, or function name, and
where each <dimi> is either empty, or has as its value a subscript list
in parentheses.
BL/I_Syntax
DECLARE<var1><dim1>FLOAT BINARY (53) STATIC,...,<varp><dimp>FLOAT
BINARY (53) STATIC;

If <varj> is a function, the specification is given by RETURNS
(<type>) .
SERVICE SUBPROGRAMS.
If a call to any of the following subprogranms:
SLITE, SLITET, OVERFL, DVCHK, DUMP, PDUMP

occurs in the source program, it remains unchanged, but the LCP provides
no corresponding external procedure

A call to the FORTRAN EXIT subprogram is converted directly to STOP,
unless the subprogram name EXIT is followed by <arglist>. 1In this case,
the converted statement takes the following form:

CALL EXIT (conv<arglist>) ;

A warning message is issued.

Conversion Actions 33

INPUT/OUTPUT STATEMENTS

Sequential input/output statements only are converted.

READ STATEMENTS

The LCP processes each of the three basic forms of the READ statement.
The following syntactic variables are used in the discussion of READ
statement conversion:

e <data set ref no>, which has as its value an unsigned integer con-
stant or variable representing a data set reference number

e <formlist name>, which has as its value the statement number or
array name of the FORMAT statement describing the data to be read,
or a NAMELIST name

e <end err part>, which takes the form <end part><err part>, or <err
part><end part>

where:

<end part> is empty or takes the form:
. END = <end statement no>

<err part> is empty or takes the form:
, ERR = <err statement no>

e <list part>, which is empty, or is a list of variable or array names
that may be indexed and incremented

Note: <data set ref no> is converted into FT<data set ref no>F01

For each of the three basic forms of the READ statement, the LCP pro-
cesses the <end err part>, when present, as follows:

If END=<end statement no> is present, the LCP, just before converting
the READ statement, generates the ON-condition statement:

ON ENDFILE (FT<data set ref no>F01)GO TO EXTLAB<end statement no>;

If ERR=<err statement no> is present, the LCP, just before converting
the READ statement, generates the ON-condition statement:

ON TRANSMIT (FT<data set ref no>F01)GO TO EXTLAB<err statement nod>;

In addition, if <end err part> is present, the LCP, immediately after
the converted READ statement, generates the ON-condition statement:

ON<end err cond>(FT<data set ref no>F01) SYSTEM;
where <end err cond> is either ENDFILE or TRANSMIT.

If <formlist name> has the format <namelist name> associated with a
NAMELIST statement, the LCP must process a statement of the form:

NAMELIST/<name 1>/<vararray list 1>/.../<name n>/<vararray list n>

34

where <namelist name> is a <name i>, and <vararray list i> is a list of
variable or array names associated with <name i>.

For each <namelist name>, the LCP creates a table of the associated
variable and array names to be referred to via the <namelist name> in a
subsequently generated GET statement.

Note: 1If <formlist name> 1s an array name referring to a FORMAT state-

ment, or if <data set ref no> is an integer variable, conversion does
not take place and a warning message is issued.

Form_READ (<data_set ref no><namelist name><end err_part>)

PL/I_Syntax
GET FILE (FT<data set rer no>F01)DATA (Kvararray list i>) ;

A warning message is issued after conversion.
Note: In PL/I, no search is made for a specific name list. It is

therefore the user's responsibility to ensure that the data is arranged
in the correct sequence.

PL/I_Syntax

GET FILE (FT<data set ref no>F01)EDIT (conv<list part>) (R(conv<format
name>)) ;

Source program variables within I/0 lists may be indexed and incre-
mented in the same manner as variables in a DO statement; the LCP treats
them identically.

If the <list part> of the READ statement contains index2d I/0 lists
and/or arrays a warning message is issued. If the FORMAT statement
referred to contains literal data or an A- or H-format code, conversion
of the literals or of the A- or H-format codes affecting the elements of
the list included in and following the first array or indexed I/0 list
is incorrect.

Original
DIMENSION A (10),B(10)
READ (5, 100) (A (I),B(I),I=1,10)

100 FORMAT (*'A=',E12.5,'B=',E12.5)

Converted (with warning)
DECLARE A(10) FLOAT BINARY STATIC,B (10) FLOAY BINARY STATIC;
GET FILE(FTO5F01) EDIT ((A(I),B(I) DO I=1 TO 10))
(R(EXTLAB100)) ;

EXTLAB100:FORMAT (COLUMN(1) ,A(2) ,E(12,5),A(2),E(12,5));

Form READ (<data_set_ref no>)<list>

Since binary data cannot be directly transmitted in PL/I in the same
manner as in FORTRAN, statements of this type are not converted; they
are, however, identified by messages.

Form_ READ <format name>,<list_part>

EL/I_Syntax

GET FILE (SYSIN) EDIT (conv<list part>) (R (conv<format name>));

Conversion Actions 35

Original
READ 5, 1
5 FORMAT (I5)

Converted
GET FILE (SYSIN) EDIT (I) (R(EXTLABS)) ;
EXTLAB5:FORMAT (COLUMN (1) ,F (5));

PRINT STATEMENT

Original
PRINT 5,1
5 FORMAT (I5)

Converted

e . e e e e e e

EXTLAB5:FORMAT (COLUMN (1) ,F (5));

PUNCH STATEMENT

PUNCH 5,1
5 FORMAT (I5)

Converted

PUT FILE (SYSPRINT)EDIT(I) (R(EXTLABS)) ;
EXTLAB5:FORMAT (COLUMN (1) ,F (5)) ;

WRITE STATEMENT

Except for the absence of the parameters END and ERR, the LCP treats the
WRITE statement in the same way as the READ statement, replacing GET by
PUT.

Note: Differences in format will appear in the output from the con-
verted program in the case of namelist transmission.

FORMAT STATEMENT

To force a new record each time that a FORMAT statement is used, the LCP
inserts the control format item COLUMN (1) at the beginning of the con-
verted format list.

Note that in PL/I, format items, even when they include control for-
mat items, are ignored if they appear after transmission of the last
data list item. Differences in format may therefore appear in the out-
put listing.

The following examples illustrate the conversion of the various forms
of the FORTRAN FORMAT statement.

36

Numeric Format_ltems

1, F, E, D codes

Qriginal
5 FORMAT (312, 4F11.4, 2E9.3, 3D20. 16)

Converted

o e o e s s i

EXTLABS: FORMAT (COLUMN (1) ,3 F(2) ,4 F(11,4),2 E(9,3),3 E(20,16));

The BLKZR control card option enables the user to call the function
LBLNK. LBLNK will then appear in the converted format code. On input,
this function modifies numeric data as follows:

- replaces & (plus sign in BCDIC) by +
- replaces D (double~-precision) by E
- inserts a zero if the external data field is blank

- inserts + after E, if the character following E is a blank, and
replaces other embedded and trailing blanks by zeros.

If the FORMAT statement is only used for PRINT files, LBLNK is not
generated.

Transmission_of Complex_Data: FORTRAN requires an E-format specifica-
tion for each part of a complex number. This format can be used in the
same program for both complex and real numbers. It is user's responsi-
bility to replace E-format specifications by PL/I C-format
specifications.

Original
5 FORMAT (F5.3,E10.3)

Converted (with option BLKZR)
EXTLABS5:FORMAT (COLUMN (1) ,F (LBLNK(5) ,3) ,E(LBLNK(10),3));

Scale Factor

<integer constant>P<real item>

where <integer constant> may be positive or negative, and <real item>
takes the form Fw.d.

—— e S s =

ORMAT (COLUMN (1) ,F (11,4,-1) ,F(11,4,-1)) 3

Since PL/I accepts the P-factor for F-format items only, the LCP does
not convert this factor for E or D codes, and a warning message is
issued.

Note: The effect of the scale factor is dynamic in FORTRAN IV. The
results of the PL/I target program may therefore differ from the
expected results. If the format refers to an input statement, it is the
user's responsibility to invert the sign of the P-factor.

Conversion Actioas 37

Logical Format Item

<format code> is L.

Original
7 FORMAT (2L10)

Converted
EXTLAB7 : FORMAT (COLUMN (1) ,2 B(10)) ;

The user should note that logical data in the external medium must be
in a form accpetable to the PL/I compiler. Thus, the values .TRUE. and
+.FALSE. must be represented by 1 and 0 respectively, and may occur
anywhere within the field of the size indicated in the FORMAT statement.
On output, the +truth values 1 and 0 will be left-adjusted within the
indicated field. Thus, using the above example, external data for input
might appear in the form:
<blank> (2) 1<blank>{(7) <blank>0<blank> (8)
where <blank>(p) is a string of p consecutive <blank>'s.

Similarly, output of logical data would take the form:
1<blank> (9) 0<blank> (9)

A warning message is issued.

Character-String Format Item

<format code> is 1.

Original

5 FORMAT (20A4)

Converted
EXTLAB5:FORMAT (COLUMN (1) ,20A (4));

Note__1: Using the A-format code, FORTRAN can read or write a
character-string in a field having a variable name. This variable will
be given the CHARACTER (4) attribute in the PL/I target progranm, except
if it appears after an indexed list and/or an array. 1It, therefore,
retains the CHARACTER (4) attribute throughout the program, i.e., it
must not be wused to contain numeric values. Tn particular, the user
must check that the variable passed through the FORTRAN COMMON and CALL
statements in both main program and subprograms has the same type of
declaration in PL/I. Note also that, FORTRAN IV source programs written
for current IBMN systems other than System/360 may give incorrect results
due to the number of characters that are transmitted.

Note 2: TIf the <list part> of the corresponding input/output statement
contains indexed 1lists and/or arrays, the variables of the <list part>
that are included in or follow the first indexed list or array, and that

correspond to an A-format code, are not declared as CHARACTER.

Generalized Format_Iten

<format code> is G.

This format code is not converted; a message is issued.

38

Hexadecimal Format_Item

<format code> is Z.

This format code is not converted; a message is issued.

Literal Data and H-Format Code

98 FORMAT (' HEADING')

Converted

EXTLAB98:FORMAT (COLUMN (1) ,A(8)) ;

98 FORMAT (8H HEADING)

Converted

e e s e e e s

EXTLAB98:FORMAT (COLUMN (1) ,A(8))

In either case, a dummy variable containing the string ' HEADING' is
created and transferred to the data list in the corresponding GET or PUT
statement, and the remote format item R (EXTLAB98) is appended to the
relevant statement.

For indexed I/0 lists, the conversion of literals or of H-format code
is incorrect (see READ statement).

Control Format_Items

e Spacing_Format_Item:

Converted
EXTLABS5:FORMAT (COLUMN (1) ,F(10) ,X(10) ,4 F(10));

e Printing Format Item: <blank>,0,1,+,/.

Printer control characters are printed as output data characters
and are included in the format code.

5 FORMAT ('1NEXT PAGE', T15,'DATA'/* NEXT LINE'///// ' SKIP!',
'FOUR LINES'/ 'ODOUBLE SPACING')

Converted
EXTLAB5: FORMAT (PAGE, A (10) ,COLUMN (15) ,A (4) , SKIP (1) ,COLUMN (1) ,A(10),
SKIP (5) ,COLUMN (1) ,A(5),A(10),SKIP(3),A(15));

A(10) ,SKIP(2) ,A(15));

Conversion Actions 39

In addition, the literals apppearing in the source FORMAT state-
ment are placed in dummy variables which are transferred, in order,
to the data list of the generated PUT (or GET) statement whose
remote format reference is R (EXTLABS).

The format code + is converted into the format item SKIP (0).

e Parentheses: When there are more data list items than format items,
and in order to force the repetition of the format from the last-
included left parenthesis, an additional pair of parentheses is
required. Therefore, every time it encounters a pair of parentheses
of level 2 in a FORMAT statement, the LCP automatically cresates an
additional pair of parentheses preceded by a repetition factor of
32767.

Qriginal
5 FORMAT (I2, (F5.2,I4),I5)

=1}
»=1{0

averted
TLABS:F

ORMAT (COLUMK(1) ,F(2) ,32767(1(F(5,2) ,F(4)),F(5),SKIP(1)));

When the same FORMAT statement applies to PRINT and non-PRINT files,
a warning message is issued.

Note: The first character of a string appearing at the beginning of a
record is both converted as a control character and treated as data if
one of the corresponding files is a PRINT file. When such a string con-
tains only one character, it is converted as a control character if all
the corresponding files are PRINT files.

END FILE STATEMENT

This statement is not converted; a warning message is issued in the out-
put listing. However, if on the same data set an END FILE statement is
dynamically followed by a REWIND statement, the effect may be the same
as in FORTRAN.

REWIND STATEMENT

CLOSE FILE(FTO6FO01) ;

Note: The conversion of a REWIND statement by a CLOSE statement nmay
give different effects, for the data set will be repositioned at the
beginning of the tape after writing an end-of-file mark. A warning mes-
sage is issued.

BACKSPACE STATEMENT

This statement is not converted; a message is issued.

40

CONVERSION OUTPUT AND MESSAGES

The LCP can generate two forms of conversion output:
1. A listing of the converted progranm
2. The converted program on punched cards or in card-image form

The listing of the converted program is always provided, but the
punched-card (or card image) output is optional. The listing contains
the converted program together with messages generated during conver-
sion. Additionally, the user can specify that a listing of the source
program be included.

LISTING

The listing contains two major sections:
1. The optional source program listing
2, The converted program

The source program listing contains the original source statements
exactly as they appeared in the input.

The listing of the converted program includes :

e The converted program itself. This again is divided into two parts,
One part contains converted statements, statéments generated by the
LCP, messages replacing statements that have not been converted
(i.e., FORTRAN statements for which conversion is not possible or
not practical), and warning message flags. The other contains mes-
sages showing either that the FORTRAN source statement cannot be
converted or that conversion has taken place, but that fidelity to
the source statement cannot be guaranteed.

e A table of source program statement function or subprogram names,
each of which has béen replaced either by an equivalent built-in
function or procedure (see Appendix B), or by a function name that
avoids conflict with PL/I built-in function names not available in
FORTRAN. The changed or substituted name appears next to the func-
tion name it has replaced.

¢ A table of source program variable or array names that have been

replaced by an LCP substitution name. The replacement appears next
to the corresponding variable or array name.

MESSAGES

Messages in the output listing indicate clearly the statements in the
converted program to which they apply, thus enabling the usesr to scan
the program for statements that require manual changes.

Conversion Output and Messages 41

A message appears with each output statement that falls into one of
the following categories:

e The FORTRAN statement is not convertible into PL/I.

e The PL/I statement may not have the same effect as the corresponding
FORTRAN source statement.

Using the output listing, the present manual, and the PL/I language

specifications manual , the user can determine the hand changes required
to make the PL/I program suitable for compilation.

The punched cards (or card images) produced by the LCP contain converted
statements, the form of which matches that in the listing.

Statements flagged with a warning message should, where necessary, be
corrected before the PL/I program is submitted for compilation.

42

APPENDIX A. _CORRESPONDING FORTRAN AND PL/I BASIC_SYMBOLS

FORTRAN IV _Symbol PL/I_60-Character PLy/L _U48-Character
Set_Symbol Set_Symbol

A-Z A-2Z A-2

$ $ $

0-9 0-9 0-9

blank blank blank

= Oor oEQ. = =

+ + +

* * *

/ / /

(((

)))

’ r ’

' (apostrophe) ! (apostrophe) ' (apostrophe)

eNQOT e 1 NOT

eANDe & AND

e(QRe | OR

eGTe > GT

o[Te < LT

eGEe >= GE

eNEe Q= NE

eLEe <= LE

Appendix A 43

APPENDIX B. _CONVERSION OF FORTERAN MATHEMATICAL FﬁNCTION SUBPROGRAMS

In the following table, unless otherwise specified, the number of argqu-
ments associated with each FORTRAN function is the same as that for the
corresponding PL/I function.

FORTRAN_Function PL/I_Function
EXP EXP
DEXP EXP
CEXP EXP
CDEXP EXp
ALOG LOG
DLOG LOG
CLOG LOG
CDLOG LOG
ALOG10 LOG 10
DLOG10 LOG10
ATAN ATAN
DATAN ATAN
ATAN2 ATAN
DATAN2 ATAN
SIN SIN
DSIN SIN
CSIN SIN
CDSIN SIN
cos cos
DCOS cos
ccos cos
CDCOS cos
SQRT SQRT
DSQRT SQRT
CSQRT SQRT
CDSQRT SQRT
TANH TANH
DTANH TANH
MOD MOD
AMOD MOD see Note 2
DMOD MOD
IABS ABS
ABS ABS
DABS] ABS
CABS ABS
CDABS ABS
INT TRUNC
AINT TRUNC
IDINT TRUNC

Ly

FLOAT
DFLOAT

IFIX
HFIX

SIGN
ISIGN
DSIGN

DIM (<arg1>,<arg2>)
IDIM(<arg1>,<arg2>)

SNGL (<arg>)
REAL
AIMAG
DBLE (<arg>)

CMPLX
DCMPLX

CONJG
DCONJG

TAN
DTAN

SINH
DSINH

COSH
DCOSH

ERF
DERF

ERFC
DERFC

PL/1_Function

MAX
MAX
MAX
MAX
MAX

MIN
MIN
MIN
MIN
MIN

FLOAT
FLOAT

FIXED
FIXED

See Note 3
"

See Note 2
"

REAL
IMAG
See Note 2

COMPLEX
COMPLEX

CONJG
CONJG

TAN
TAN

SINH
SINH

cosH
COSH

ERF
ERF

ERFC
ERFC

Appendix B

45

If the source program contains subprogram names created by user that
match FORTRAN IV mathematical function names, they must be specified in
an LCP control card (see Appendix E) so as not to be converted to PL/I
functions. Thus, if the assignment statement:

Y=EXP (X) +DEXP (Z)

appears in the source program, and DEXP is a user function name, this
name must be listed in the LCP control card. The user can then provide
his own DEXP FORTRAN function subprogram for conversion to PL/I.

If a name created by the user (EXP, for example) coincides with one
of the PL/I built-in function names listed above (except for COMPLEX and
REAL), a conflict may arise if the name is also the PL/I equivalent of a
FORTRAN function (DEXP, for example) used elsewhere in the program. In
this case, the converted form of the assignment statement illustrated in
the preceding paragraph would be:

Y = EXP(X) + EXP (2)
The following mathematical functions:

DIM, IDIM, SNGL, DBLE, ARSIN, DARSIN, ARCOS, DARCOS, COTAN, DCOTAN,
GAMMA, DGAMMA, ALGAMMA, DLGAMMA

are not converted.

The conversion provided for the mathematical functions MOD, AMOD, and
DMOD produces correct results only if the first argument is greater than
ZerO0.

Note 3

The LCP converts the functions SIGN, ISIGN, and DSIGN by providing an
internal procedure for each.

For the SIGN function the procedure is:

SIGN:PROCEDURE(A1,A2) FLOAT BINARY;
DECLARE (A1,A2) FLOAT BINARY;
IF (A2<0) THEN RETURN (-ABS(A 1)) ;
ELSE RETURN (ABS (A1)); :
END;

In the ISIGN function, FLOAT BINARY is replaced wherever it appears
by FIXED BINARY(31); in the DSIGN function, by FLOAT BINARY (53).

46

1.

2.

4.

5.

6o

10.

11.

12.

1?

14,

APPFNDIY _C._ _LCP RESTRICTIONS

vevadecimal and octal constants are not converted,

The conversion of subscripts containing the operators /or %, mixed
mode expressions, function references, or subscripted names mavy
give incorrect results,

The user must ensure that his program, inr no event, uses an
assigned variable for any purpose other than for the assigned GO ™0
statement.

The user must ensure that his program, in no event, contains a
transfer back into a "0 loop.

When converting a COMMON statement, the user should ensnre that
common blocks in the various subprograms are the same, that is, the
COMMON statements in the various subprogram must be identical.

In version 4, the conversion of PORTRAN integer constants two bvtes
in lenqgth, and of logical data items mav agive incorrect results.

The number of dimensions of an arrav used in the list of parameters
must be equal to that of the corresponding argument,

‘On. entrv to a function or to a subroutine, initialization of para-

meters made on a previous entry may he lost.

Tn a DATA statement, when the initial values are literals, the
correspqnding variables are declared as CHARACTRR bv the LCP, and
must remain so throughout the program, i.e., thev must not he useAd
to contain numeric values. 7Tn particular, the user must check that
variables passed through the FORTRAN COMMON and CALL statements in
both main proaram and suhproqrams have the same type of declaration
in PL/Y. An implied DO in a DA™A statement is not converted.

FORTRAN literal constants should not be passed as arquments +o a
subprogram. The user should note that FOPT™RAN IV and PL/T Ao not
handle adqjustable dimensions in the same manner, and that in PL/T
the dimensions of an array passed as arqument are those of the cal-
ling program.

Initial values assigned to variahles ir FOUIVALFNCF statements
should be adqjusted hvy the user.

The LCP does not provide PL/I external procedures to simulate the
effect of FCRTRANV service suhprograms OVRP®[, NVCHKX, SLITE, SLITF™,
DUMP, and PDUMP,

The LCP does not provide external procedures to simnlate the effact
of the following FORTRAN mathematical function subprogranrs:

ARSTN, DARSTN, ARCOS, DARCOS, COTAN, NCOTAN, GAMMA, NGAMMA, ALGAMA,
DLGAMA, DIM, TDTM, SN3L, DULE.

A READ/WRTTE statemant is not converted if:
a. T™e statement anplies to direct-access mode.

b. A FORMAT™ statement is referred to by an arrav name,

Appendiy Cc 47

15.

16.

17.

1€,

19.

48

c. Binary data transmission is indicated (no format reference).
d. A data set reference number is an integer variable.

The following restrictions, due to differences in the implementa-
tion of PL/I, apply to the conversion of the FORMAT statement:

a. When an input/output statement contains arrays or indexed I/O
lists, and the FORMAT statement referred to contains literal
data, or an A- or H-format code, conversion of the literals or
of the A- or H-format codes affecting the elements of the list
included in and following the first array/indexed I/O list is
incorrect.

b. In PL/I, format items, even when they include control format
items, are ignored if they appear after transmission of the
last data list item. Consequently, differences in format may
appear in the output listing.

c. E-format codes associated with complex numbers must be changed
into PL/I C-format codes.

d. Pe-scale factors associated with E- or D-format codes are not
converted. Moreover, the effect of the scale factor associated
with an F-format code may differ. TIf the format refers to an
input statement, it is the user's responsibility to invert the
sign of the P-scale factor.

e. G-, Z-, and O-format codes are not converted.

f. When a format refers to a PRINT file and/or a non-PRINT file,
the first character of a string appearing at the beginning of a
record is treated, in general, both as a control character and
as data.

The BACKSPACE and END FILE statements are not converted,

The conversion of the REVWIND statement by a CLOSE statement gives
equivalent effects only if the REWIND statement applies to the
first data set on the tape.

If a name created by the user coincides with a PL/I built-in func-
tion name, there may be conflict if the name is also to be the PL/I
equivalent of a FORTRAN mathematical function used elsewhere in the
proqranm.

The name of the PL/T equivalent of certain FORTRAN mathematical
function subprograms cannot ke passed as an arqument. These PL/T
built-in function names which cannot he used as arquments are:
FIX®D, AES, MOD, REAL, MAX, WIN, FLOAT, IMAG, TRUNC, COMPLEX, and
CONJG. For other PL/I built-in function names passed as araquments,
the user must specify the ENTRY attribute in order to describe
their entry points progperly.

APPPFNDIX _D._ _DISTRIBUTION OF THF¥ LCP

The LCP is distributed by TBM in one of two forms:

e On a disk pack for users having no tape units

e On tape

PROGRAMS ON_DISK_PACK

CONTENTS OF THE DISK PACK

The following data sets are written on the disk pack with label FLCPRS:

1.

r

3.

4.

A sequential data set (DSNAMF=FOCCARD) containing the control cards
required by the linkage editor to create a partitioned data set
with one member: the LCP.

Fighteen data sets containing the 18 modules of the LCP. These
modules are in object form, being the output from the PL/I (F) com-
piler version 5, or from the System/360 Operating System (F)
assembler,

A sequential data set (DSNAME=SAMPLF) containinag the sample program
written in FORTRAN. (For use of the sample proagram, refer to
Appendix H.)

One data set (DSNAME=LBLNK) containing the object module of the
function, provided to process blank as zero in numeric data under
the control of the option BLK7R.

CREATING THE LOAD MODULFE

The user must perform the following steps:

1.

rransfer the data set mentioned in (1) above to cards, to obtain
the control cards required by the linkage editor. The following is
an example of the control cards needed to do this:

//AB Jos 4727,SMITH, MSGLEVEL=1
//ABA EXEC PGM=IEBPTPCH
//SYSPRINT DD SYSOUT=A
//51sUT2 DD SY¥souT=B
//SYsuT1 DD ONIT=2311, C
// DISP=0LD, C
// DSNAME=FOCCARD, c
Vi4 VOLUME=SER=FLCPRS
//SYSTN DD *
PONCH
/%

The control cards obtained contain all the information required
by the linkage editor, i.e., names to be used for the load module
to be created, overlay structure, etc.

Appendix D 49

2. Modify the JOB card and the volume serial number in the //SYSLMOD
DD... card in order to use his own label. 1In addition, the user
may have to modify other cards, depending on:

¢ The level of his linkage editor
(The editor used here is the 44K E-level linkage editor.)

e Any change that may be required in the names of the load module

3. Add a /* card to the control cards obtained, and create a parti-
tioned data set (DSNAME=FORLCP) containing the LCP (member name=
LCPFORT) , using as input to the linkage editor the 18 data sets
described under "Contents of the Disk Pack."

Note: The same procedure will be used when maintaining the LCP; in this
case, the input to the linkage editor will consist of the updated
modules, also delivered in object form.

PROGRAMS ON TAPE

CONTENTS OF THE TAPE

Four files are written on the tape, which is blocked with a blocksize of
2400 bytes:

File 1, which contains the 18 modules of the LCP and the overlay structure
File 2, which contains the control cards required by the linkage editor
File 3, which contains the sample program written in FORTRAN

File 4, which contains the object module LBLNK

CREATING THE LOAD MODULE

The user must perform the following steps:

l. Transfer file 2 to cards to obtain the control cards required by
the linkage editor. The following is an example of the cards
needed to do this:

//ABC JOB 4727 ,SMITH,MSGLEVEL=1
//ABA EXEC PGM=IEBPTPCH
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD UNIT=2400,LABEL=(2,NL), C
// VOLUME=SER=888888 ,DISP=0LD, C
// DCB=(RECFM=FB, LRECL=80 ,BLKSIZE=2400)
//SYSUT2 DD SYSOUT=B
//SYSIN DD *
PUNCH
/*

The control cards obtained contain all the information required
by the linkage editor, i.e., names to be used for the load module
to be created, etc.

50

2. Deblock file 1 using the IEBGFNEP utility progran.

3. Modify the control cards, if required. (See item 2 of the section
"Creating the Load Modules'" under "Proqgrams on Nisk Pack.")

4, ndd a /= card to the control cards ohtained, and create a narti-
tioned data set (DSNAME=FORLCP) containing the ULCP (member name=
LCPPORT), using the 18 modules in file 1 as input to the linkage
editor.

Note: The same procedure will be used when maintaining the UCP; in this
case, the input to the linkage editor will consist of the updated
modules, also delivered in object fornm.

USING THE FUNCTION LBLNK

When executing the PL/I program and if the option RLK7ZR has been used
during the conversion, file 8 must be copied onto a Aisk pack in order
to be used. ™he following is an example of the cards needed to do this.

//AB JOB 4727,SMITH, MSGLEVFL="T

//A EXEC PAM=TEBGENER

//SYSIN DD DUMMY

//SYSPRYNT DD SYSoUT=A

//S¥SUT2 DD DISP= (NFW,KFFP),UNI™=2311, c
7/ VOLUMR=SRR=YYTYYY ,DSNAMNF=LBLYNK, c
V24 DCB= (RFCFM=F,LR¥CL=80,BLKSI"F=80), C
// SPACE= (TRK, (1, 1)) o
//s¥sum1 DD UNTI™=2400,LABEL=(4,NL), c
7/ VOLUME=SFR=888888, DISP=0OLD, c
// DCB=(RECFM=FR,LRECL=80,RLKSTZE=2400)

/*

Appendix D 51

APPENDIY P, _OPERATING PROCFDURFS

FYECUTING_THE_LCP

The following control cards must he supplied by the nser to evecuts the
LCP, T™he standard options are underlined.

//AB JOR
//JOBLIB DD
// FYRC
7/

//

//S7SPCH DN

//SYSIOERR DD

//SYSPRNT DD

/7/75¥suT1 Dn
//SYSuT? DD
//SYSIN nn
/ (Starting

4777, SMTTH, MSGLEVEL=1

DSNAMP=FORLCP,NISP=0OLD, UNIT=2311,VOLIMF=SER=xYY¥XYY

PGM=LCPPOPT, PARM=1 SQUPCP{NOSNURCP, DNPCKINODFCK, c
BOD)FRCDIC, FYTRREF| NORYTPE®, CHAR4B ICHARAD, r
BLK7R |NOBL¥XZR, SIZF=yx¥xxx"

SYSOouT=B

SYSOUT=A

SYSOU™=A,DCB= (RECFM=VA, BLKSI7RE=129,LPRECL=12FK)

Parameters defining a work data set, See also
the note on the parameters SPACE and DCR,

As for SYSU™1
Parameters defining source input data set

in column 7) List of subprogram names created hy the

vser that ma*ch FORTRAN TV mathematical function names
and of data-set-numhers to he declared PRINT. Names
and numbers may be mixed, but must be separated bv commas.

.
|
]
|
L
/%
Note:
SYsuTa
SPACE
DCB
515012
SPACE
DCB

52

FORTRAN SOURCE PROGRAM

mhis parameter depends on the length of +he
FORTRAN source program to he converted

one cylinder is reguired for 120 cards of source
program or subprogranm.

This parameter has the following form:
DCB= (DSORG=DA,KEYLEN=9)

Ore cvlinder is required for 500 cards
of source progranm

This parameter has the following form:
DCR= (DSORG=DA)

Batch_Progessing: TV'n batch processing, the spaces used on the disk ave
the same. Therefore, to estimate the number of cvlinders required, the
total number of cards in the batch should not be taken in+to considera-

tion, but only the number of cards in the largest progranm in the hatch,

CQNTROL_CARD_OPTIONS
EXEC CARD OPTIONS

The following options can be specified in the PARM field of the EY®C
card., If no option is specified, the standard option (underlined) is
assumed.

The total length of the options indicated hetween apostrophes in +he
PARM field must not exceed 40 characters, commas included. Because of
this limitation, the LCP accepts abbreviated options (indicated between
parentheses in the following text):

e NOSOURCE or SQURCE (NS or 5)
This option specifies whether the FORTRAN source progranm is to bhe
listed on the device indicated by the SYSPRNT DD card.

* DECK or NODECK (D or ND) ,
This option specifies whether the PL/T program is to be punched on
the device indicated by the SYSPCH NN card.

* BCD or EBCDIC (B or EB)
This option specifies the character code of the FORTRAW source pro-
gram and, consequently, that of the LCP output.

e CHARUS or CHAR6Q (Ccu8 or CKO)
This option specifies which character set is to be used to list the
converted program.

e EXTREF or NOEXTREF (E or NE)
This option specifies whether the name changes in the FORTRAN source
program are to be listed on the device indicated by the SYSPRNT DD’

card.

e BLKZR or NOBLKZR (B7 or NBZ)
This option specifies whether the external form of numeric input
data must be processed during execution of the PL/I proqram; if this
is the case, the function LBENK is used for the conversion of E-, F-
and I-format items.

e SIZE=xxxxx or SITE=71680
This option specifies the main storage size that is avajlable *to the
LCP. The minimum size of main storage is 71680 bytes; this is the
standard size for the purposes of this option., Tf the user:

1. Specifies a smaller value, it is ignored and the standard size
is assuned.

2. Specifies a value greater than 71680. rhis will result in an
improvement in performance,

Appendix ® 53

LCP CONTROL CARDS

These cards, if necessary, are placed after a SYSIN DD statement and
between programs in batch processing. These cards contain:

e / in column 1
e Starting in column 7:

1. The subprogram names created by the user that match FORTRAN IV
mathematical function names (from the list given in appendix
B) ; these names are not changed by conversion.

2. The data set numbers that he wishes declared with the PL/I
attribute PRINT. Any numeric field of up to two digits is con-
sidered as a data set reference number. Note that the PL/I
file FT06F01 (data set number=6) is automatically declared with
the PRINT attribute. If the user wishes to override this
declaration, he must specify 0 as the data set reference
number.

EXECUTING THE PL/I_TARGET_ PROGRAM

After any necessary hand changes are made, the converted PL/I target
program may be used with a normal set of control cards for PL/I pro-
grams, for example, IBM supplied catalogged procedures such as PL1LFCLG.

If the user chooses the option BLKZR during the conversion run, he
must link edit the LBLNK module when executing his target program. He
will have to add the following control card for the link edit step:
//LKED.SYSIN DD DSNAME=LBLNK,DISP=OLD,UNIT=SYSDA,VOLUME=SER=XXXXXX

where xxxxxx is the volume serial number of the disk rack containing the
LBLNK obgject module.

54

APPENDIX F. _MESSAGES

This appendix contains the list of messages that may be issued during
the execution of the LCP. 1In each messages, xxxx represents an identi-
fication number of up to four digits which appears to the right of the
converted line in the output listing and in the corresponding card image
if the option DECK has been specified. The last digit of this number is
that of the ten positions; the units position is not printed.

IPBOO1T

IEBOO2T

IPBO03I

READ OR WRITE STATEMENT
PL/I AND FORTRAN RESULTS MAY DIFFER IN LINE xxxx

Explanation: If the READ or WRITE statement contains indexed
I/0 lists and/or arrays, and the FORMAT statement referred to
contains literal data or an A- or H-format code, conversion of

these items is incorrect.

In the conversion of a READ or WRITE statement using NAMELIST,
it should be noted that:

e A DEFINED item cannot appear in the data list in PL/I.
e On input, no search is made for a specific NAMELIST name
Required Action: For transmission of a character string appear-

ing among the values of an indexed list or of an array, the user
should:

e On input, create a dummy variable containing the character
string and insert it in the list.

¢ On output, either proceed as above, or insert the character
string itself in the list.

For a DEFINED item appearing in a data-list, the user should
replace this item by a dummy variable both in the data list and
in the data.

ENTRY STATEMENT
PL/I AND FORTRAN RESULTS MAY DIFFER IN LINE XxxXxXX

Explanation: On entry to a function or a subroutine, initiali-

zation of parameter made on a previous entry may be lost.

Required Action: If needed, the user should insert additionnal
dummy formal parameters or use dummy static variables.

ASSIGNED GOTO STATEMENT
PL/I AND FORTRAN RESULTS MAY DIFFER IN LINE XXXX

Explanation: An assigned variable cannot be used for any pur-

pose other than for the assigned GOTO statement.

Required Action: If a label used in an ASSIGN and in an
assigned GOTO statement is also used as a variable elsewhere in
the program, the label should be changed.

Appendix F 55

| 1PBOOY4I

| IPBOOSI

IPBOO6I

| IPFB0O7I

56

COMMON/EQUIVALENCE STATEMENT
PL/I AND FORTRAN RESULTS MAY DIFFER IN LINE xxxx

Explanation: In general, the conversion of integer variables
two bytes in length and of logical variables will result in in-
correct addressing. This may also apply to elements with the
CHARACTER attribute.

Required Action: The user should insert additional dummy
variables to provide correct alignment.

ARITHMETIC ASSIGNMENT STATEMENT
PL/I AND FORTRAN RESULTS MAY DIFFER IN LINE XXxXxX

Explanation: The right-hand part of the assignment Statement is
an expression of REAL type and the left-hand part is of INTEGER
type. Due to difference of implementation, the results of the

truncation may differ.

Reguired Action: It is the user's responsibility to check
whether truncation due to conversion gives the expected result.
The built-in function CEIL may be used if the expected result is
not produced.

SUBSCRIPT
PL/I AND FORTRAN RESULTS MAY DIFFER IN LINE xXxXxX

Explanation: A subscript expression contains the operators xx

e el e S

andsor /, or a left parenthesis.

Required Action: If the subscript contains integer division,
the user should insert the built-in function TRUNC. If it con-
tains a subscripted variable, the user must reverse the order of
the subscripts. The operation %% may give a result of REAL
type. The user must verify that the result of the truncation is
correct.

FCRMAT STATEMENT
PL/I AND FORTRAN RESULTS MAY DIFFER IN LINE XXXX

Explanation: PRINT and non-PRINT files have the same format, or

one (or more) of the following items is detected:
e G-, Z- and 0- format codes (not converted)

e P-scale factors associated with E- or D-format codes (not
converted)

e L~-format code.

Required Action:

1. PRINT and non-PRINT files:

The user must specify two FORMAT statements, one for PRINT files
and another for non-PRINT files.

e G-, Z- and O-format codes:

The user must replace these format codes by a type acceptable to
PL/I.

e P-scale factors:
The user should modify the corresponding data
o L-format code:

Logical data in the external medium must be in a form acceptable
to PL/I.

IPBOO8I SERVICE SUBPROGRAMS
PL/I AND FORTRAN RESULTS MAY DIFFER IN LINE XXxXX

Explanpation: This message is issued when a call to subprograms

EXIT, DUMP, PDUMP, OVERFL, DVCHK, SLITE and SLITET is detected.

1. EXIT:

The CALL statement has been converted to STOP if EXIT has no
arqument list. If the user provides his own EXIT procedure, he
must modify the converted statement. Otherwise, no action is
required.

2. Other service subprograms:

If the user provides his own procedures, no action is required.

Otherwise, the user may

e For DUMP and PDUMP: use the procedure IHEDUMP (or a PUT
statement).

e For OVERFL and DVCHK: use ON-condition OVERFLOW or
ZERODIVIDE.

| IPB0091I LITERAL PASSED AS ARGUMENT IN LINE xXXX
Explanation: A literal constant may not be passed as an argu-

ment to a subprogranm.

Required Action: The user should declare with the CHAFACTER (%)
attribute the corresponding parameter in the called subprogran.

IPBO10I HEXADECIMAL/OCTAL CONSTANT NOT CONVERTED IN LINE xxxx

Required Action: The user should modify the type of the
constant.

l IPBO11I MATHEMATICAL FUNCTION NOT CONVERTED IN LINE xXXXX

Explanation: This message is issued when the mathematical

FORTRAN functions DIM, IDIM, ®OD, AMOD, DMOD, SNGLE, and DBLE
are invoked.

Reguired Action:

1 SNGLE, DBLE:
These functions should be replaced where they appear by the PL/I
built-in function PRECISION.

Appendix F 57

2. DIM, IDIM:
These functions should be replaced by the expression

conv<argument 1>-MIN (conv<arqumenti1>,conv<argument2>)

3. MOD, AMOD, DMOD:

These functions are converted using the PL/I built-in function
MOD. If the first arqgument could be lower than zero, the user
must replace the conversion by the expression:

conv<argument 1>-TRUNC (conv<argument 1>/conv<argqument 2>)
xconv<argument2>
j IPBO12I DATA SET REFERENCE NUMBER IS VARIABLE IN LINE xxxX

Explanation: A data set number in the FORTRAN statement is an
integer variable. The statement is not converted.

Required Action: The user may simulate the effect of FORTRAN by
using a series of IF statements to test the values of the data
set reference number. For example:

FORTRAN

WRITE(N,10) <data list>

BL/I
IF N=1 THEN PUT(FTO1FO01) EDIT (conv<data list>) (R(EXTLAB10))
IF N=2 THEN PUT (FTO2FO1)EDIT (conv<data list>) (R(EXTLAR10))

IF N=p THEN PUT(FTOpFO1)EDIT (conv<data list>) (R(EXTLAB10));

-
9
-
3

where p is the maximum number of data sets

| IPBO13I FORMAT REFERENCE IS ARRAY NAME IN LINE xxxx

Explanation: A FORMAT statement is referred to by an array
name. The statement is not converted.

Required Action: Attach the FORMAT statement to the inputy/
output statement.
l IPBO14I BINARY DATA TRANSMISSION IN LINE xxxx

Explanation: Binary data transmission is indicated in the

FORTRAN statement. The statement is not converted.

Required_Action: Use the PL/I RECORD I/0 facility.

I IPBO15I BACKSPACE, REWIND, OR END FILE AT LINE xxxX

Explapation: The FORTRAN statement is a BACKSPACE, REWIND, or
END FILE statement. The statements BACKSPACE and END FILE are
not converted; the statement REWIND is converted into the PL/I
statement CLOSE, but the tape may be incorrectly positioned as a
result.

58

IPBO16I

IPBO17I

IPBO18Y

IPB019I

SYNTACTICAL ERROR IN LINE x¥xxXx

Explanation: A PORTRAN statement is svntact{cally incorrect.
It is not converted.

Reguired Action: Suppress error.

FPQUIVALENCE STATEMENT. CONVERSION WITH DEFINED TTEM MAY PRODUCE
MESSAGE AT COMPILATION.

Explanation: The conversion of the FQUIVALENCF statement uses a
PL/TI (F) compiler facility; at compilation time an error message

may be issued if the attributes of the DEFINED item differ from
those of the base item, but execution is not prevented.

Reguired Action: None.

THE FOLLOWING STRING NOT IDENTIFYED AS AN OPTION - VYVYVYYYY
Explanation: The LCP is processing the option list passed to it
as a parameter, when it finds a character string that it cannot
identify as an option. The unidentifiable character string is
ignored.

Required Action: Correct the erroneous parameter.

PILE SYSUT2-INEXPLICABLE T/0 ERROR
Explanation: one of the following T/0 errors has occurred:

e Space allocation for SYSUT2 insufficient
e Permanent I/0 error on disk. (Hardware fault)

Regquired MAction: 1In first case, increase SYSUT? space alloca-
tion. In second case, change disk or disk-drive.

Note: This message is always followed by the completion code
ABEND 400.

Appendix F A9

APPENDIX G:_ _PREPARATION OF DATA

e e e o o o e s v s e e S S e e o S s S e e e i s S S o

The methods of entering data differ, in certain respects, in FORTRAN and
in PL/I.

Where applicable, the user should therefore modify the data as
follows:

1. For numeric data, the option BLKZR automatically makes the follow-
ing alterations:

e Plus sign in BCDIC (&) is replaced by +

e D is changed to E

e An all blank field is replaced by 0

e If a blank appears after E, a + replaces it

e Other embedded and trailing blanks are replaced by zeros.
For other types of data, the user must do his own modification. 1In
particular, it must be noted that the PL/I (F) compiler does not

accept an exponent of more than 2 digits.

2. The items of FORTRAN logical data TRUE (or T) and FALSE (or F)
should be changed into 1 and 0 respectively.

3. Data pertaining to a FORTRAN NAMELIST statement should be modified
to ensure that:

e The NAMELIST name is suppressed and the end-of-data group
(6END) is replaced by a semicolon.

e The repetition factors, if any, are expanded, and each value in
a data list assigned to the corresponding element of the array.

e The order of subscripts attached to variables is reversed.

e The data must be in EBCDIC.

60

APDFNDIY H, SAMODLF DORARDAM

The disk pack or the tape distributed by IBM contains, in addition to
the LCP, a sample program written in FORT™RAN IV. fThe purpose of the
sample program is to demonstrate the working of the rCP and to illus-
trate the explanations given in the various sections of this manual.

once the load module for the TCP has been created, there are three
steps to be performed:

1. Extraction of the sample program with its associated data from the
disk pack or tave, and transfer onto punched cards

2. Execution of a conversion run for the progran

3. Execution of a compile, link, and go run ﬁith the PL/T compiler,
using the output from step 2 and the data from step 1

These steps are described in detail in the paragraphs that follow.

Step 1. Fxtraction of Sample Progranm

a. For ysers receiving their program on disk pack: The FNORTRAN TV
program and its data are written on the disk pack as a single data
set (DSNAME=SAMPLE). The following is an example of the control

cards required to obtain the punched cards:

//AB JOB 4727,SMITH, MSGLEVFRL=1
//ABA EYEC PGM=IEBPTPCH
//SYSPRINT DD SYSOUT=A
//SYsSuT2 DD SYSOUT=B
//SISUTT DD UNIT=2311, c
// DISP=0OLD, c
// DSNAME=SAMOPLF, c
7/ VOLUME=SER=FLCPRS
A/SYSTN DD *

POUNCH

Appendix ¥ 61

For_users_receiving their program on_tape: The FORTRAN IV program
and its data are written on tape as a single file. The following
is an example of the control cards required to obtain the punched

/*

62

cards:

//ARB JoB
//ABA EYEC
//SYSPRINT DD
//75YS0m1 DD
// :

V4

//75YsuT?2 DD
//SYSIN DD

PUNCH

4727,SHITH,MSGLEVEL=1

PGM=IEBPTPCH

SYSOUT=A

UNTT=2400,LAREL=(3,NL),
VOLUNF=SEP=888888,

DCB= (PECPM=FB,LRECL=80,BLKSIZP=2400)
SYSOUT=R

*

Step 2. Program Conversion Run

The following is an example of the control cards required for a pro-
gram conversion run:

//AB JOB

//J0BLIB DD
//

//E EXFC
//SYSPRNT DD
//SYSIOERR DD

//SYSU™ DD
4

//SYSUT2 DD
/7

4727, SMITH, MSGLEVEL=1

DSNAME=FORLCP,NDISP=0LD,UNIT=2311, c
VOLUME=SER=XXXXXX

PGHﬂLCPFORT;PARH"SOURCF,PWCK,BLK"“'
SYSOUT=A, DCB= (RECFM=VA,BLKSITE=129,LRFCL=125)
SYSQUT=A

DSNAME=UT2, SPACE=(CYL, (5,)), C
DCB= (DSORG=DA,XFYLFN=9) , UNIT=2311

DSNAMP=UT3,SPACP=(CYL, (2,)) ,DCB= (DSORG=DA) , C
UNTT=2311

//SYSPCH nD SYSoUT=B
//SYSIN DD *
cos The FORTRAN proaram cards: SAMPRO10 through SAMPRI60

/*

Since the option SOURCF appears in the ¥“PC card, a listing of the
FORTRAN source program and of jits translation into PL/Y should appear on
the printer as follows:

Appendix F

62

s NeNeKeNeXe KeKe Ke Ee Ee Ko Ne e Ne Ko Ne Ke!

nnoaaaan

FORTRAN 1V TO PL/I LCP - VIiLO

'SIMULTANEOUS FQUATION ROUTINE SAMPRO10

THE POLLOWING DATA SHOULD BE OUTPUT™ BY THE PROGRAM. SAMPRO20

MATRIY A SAMPRO30

4.2150 -1.2120 1. 1050 SAMPROU0
«2.1200 3.5050 -1.6320 SAMPROSRO
1.1220 =1.3130 3.9860 .SAMPROARO
MATRIX B SAMPRO70

3.2160 SAMPROB0O
1.2470 SAMPRO90
2.3456 SAMPR100
A=-INVERSE SAMPR110

0. 1632 0.3836 0.1118 SANDPRI20
-0,0283 0.1029 0.3009 SAMPRIU0
SOLUTION MATRIY SAMPR1S0

0.9321 SAMPR160
14 2655 ' SAMPR170
0.7429 SAMPR180
DIMENSION A (10,10),X(10),B(10) SAMPR190

301 FPORMAT(1H1,10Y,1SHINCOMPATIBILITY) SAMPR200
302 FORMAT (1H ,10Y,81HMORE EQUATIONS THAN UNKNOWNS=NO SOLUTIONS) SAMPR210
303 PORMAT(1H ,10Y,86HMORE UNKNOWNS THAN EQUATIONS=-SEVERAL SOLUTIONS) SAMPR220
304 FORMAT (1HO, 10X, 1SHSOLUTION MATRITX) SAMPR230
305 FORMAT(1H1,10X,8HMATRIX 1) SAMPR2UN
306 FORMAT(1HO,10Y,8HMATRIX B) SAMPR250
307 FORMAT(1HO,08X,10H A-TINVERSE) SAMPR?260
308 PORMAT(1H ,10%,24HDIAGONAL ELFMENT IS 7ERO) SAMPR270
12 FORMAT (6I10) SAMPR280
READ (5,12) M1,42,L1,L2,N1,N2 SAMPR?90

M1 = NO. OF ROWS OF A SAMPR300

M2 = NO. OF COLS OF A SAMPRIO

L1 = NO. OF ROWS OF X SAMPR220

L2 = NO. OF COLS OF X SAMPR330

N1 = NO. OF ROWS OF B SAMPRUO

N2 = NO. OF COLS OF B SAMPR3S(0

13 FORMAT (7F10.4) SAMPR?60
17 FORMAT (10F10.4) SAMPR3T0
IF (N2-1)63,64,63 ‘ SAMPR280

64 IF¥ (L2-1)63,65,63 : SAMPRI90
65 IF (L1-M2)63,66,63 SAMPREOO
66 IF (M1-N1)63,11,63 SAMPRY10
63 WRITE (6,301) SAMPRE20
GO, TO 2 SAMPRO?0

11 N=M1 | SAMPRUBO
N=M2 SANPRUSO

IF (M1-M2) 91,14,93 SAMPRAE0D

Sl
$3
14

7C
8s

2C

4C
5C
60

80

12¢C
130

14C

2C1
40C

21
4C1

WRITE (€43C2)
GC TO 2
WRITE (6,303)
GC TO 2
WRITE (6,305)
DO 7C I=14N
READ (5913) (A(I9J)sd=14N)
WRITE (&91T7)(A(I4J)ed=14N)
CONTINLE
FCRVAT (F10.4)
WRITE (€,306)
READ (E5,8S)(B(I),I=1,N)
WRITE (€989)(B(1)yI=1,4N)
DC 12C K=1,N
C=A(K,yK)
IF(C)4C4200,440
A(KyKi=1l.C
CC 6C J=1,N
A(Kyd)=A(K,d)/D
IF(K-N)8C4130,130
IK=K+1
DC 12C I=IK,N
C=A(14K)
A{I4K)=Q.C
CC 12C J=14N
Al 2 J)=A(T4J)=(C*A(KyJ))
IK=N=-1
DC 18C K=1,IK
I1=K+1
DC 18C I=I1,4N
C=A(K,y 1)
A(Ks1)=C.0
CC 18C J=1yN .
A(KadI=A(K g J)=(0*A(14J))
GC TO zCz
WRITE (6,308)
GC TO 2
WRITE (64307)
CC 201 I=1,N
WRITE (€417)(A(I9d)9d=1,N)
CCATINLE
CC 21 I=1,N
X(I)=C.0
CC 21 K=14N
X(I)=Xx(1)4A(1,K)*B(K)
WRITE(€,3C4)
WRITE (6489)(X(1)y1I=1,N)
CALL EXIT
STCP
END

SAMPR 470
SAMPR48O
SAMPR 490
SAMPRS00
SAMPRS10
SAMPR520
SAMPR 539
SAMPR540
SAMPRSSE0
SAMPR560
SAMPR570
SAMPR 580
SAMPR590
SAMPR600
SAMPR610
SAMPR62C
SAMPR63N
SAMPR6 40
SAMPRE50
SAMPRGE6C
SAMPRETQ
SAMPR €8C
SAMPR690
SAMPRTCO
SAMPRT10
SAMPR72C
SAMPRT730
SAMPR 740
SAMPR750
SAMPR7&0
SAMPRTT0
SAMPR780
SAMPRT9O
SAMPR80OO
SAMPRA1N
SAMPR 820
SAMPR830
SAMPR R4D
SAMPRE50
SAMPR86O
SAMPREBTO
SAMPRARO
SAMPRBSN
SAMPRAQO
SAMPRG10
SAMPRS20
SAMPRO3C
SAMPRG&Q
SAMPR9 50
SAMPRIAK D

Appendix H €5

(NCZERCCIVICE): MAINFRC: PROCEDURE OPTIONS(MAIN);

DECLARE IK FIXED BINARY(31) STATIC,I1 FIXEC BINARY (31) STATIC,N2
FIXEC BINARY(31) STATIC,N1 FIXED BINARY(31) STATIC,L2

FIXED BINARY(31) STATIC,L1 FIXED BINARY(31) STATIC,MZ

FIXED BINARY(31) STATIC,M1 FIXED BINARY(31) STATIC,D

FLOAT BINARY STATIC,K FIXED BINARY(31)

STATIC,J FIXED BINARY(31)

STATIC,N FIXED BINARY(31) STATIC,I FIXED BINARY(31) STATIC,B(
10) FLCAT BINARY STATIC,X(10) FLOAT BINARY STATIC,A(

1Cy 10) FLCAT BINARY STATIC;

CECLARE DUNMOO8 CHARACTER(15) INITIAL('INCOMPATIBILITY'};
DECLARE DUMMCOT CHARACTER(41) INITIAL(*MCRE EQUATIONS THAN UNKNOMAINN110

WNS~NG SCLUTIGNS');

MATICNNL1N
MAICOQ20
MAINGO3N
MATINNC40
MATOOCS0
MAIOO0&0
MAT00070
MATICCOR0D
MAI CCCGO
MATICC1CO

MATIGO1290

DECLARE DULMMOOE CHARACTER(46) INITIAL(*MCRE UNKNOWANS THAN EQUATIMAIC?130

CNS-SEVERAL SOLUTIONS');

CECLARE DUMMOOS5 CHARACTER(15) INITIAL({'SCLUTION MATRIX');
CECLARE CUMMCO4 CHARACTER(8) INITIAL('MATRIX A')j;
CECLARE CUNMMOO3 CHARACTER(8) INITIAL('MATRIX B');
DECLARE DUMMQO2 CHARACTER(10) INITIAL(' A-INVERSE');
CECLARE DUNMCOL CHARACTER(24) INITIAL('DIAGONAL ELEMENT IS ZERN'MAIC"1GO

)3

CECLARE LBLNK ENTRY(FIXED BINARY)RETURNS(FIXED BINARY);

CECLAFE(FTO6FOL)IPRINT FILE;

/* SINMULTANEQOUS EQUAT ION ROUT INE*/

/% THE FCLLCWING CATA SHOULC BE OUTPUT BY THE PROGRAM.*/
/% MATRIX A%/

/* 4.215C -1.2120 1.1C50%/

/* -2.12CC 2.5CEC —1.€32C*/

/% 1.1220 -1.313C 2.68€0%/

/% MATRIX B*/

/% 2.21€0%/
/* 1.247C%/
/% 2.3456%/

/% A-INVERSE*/
/% C.251¢ C.CE33 ~C.C467%/
/* C.l€22 C.283¢ C.1118%/
/% =C.C2E3 0.1C29 C.3C09%/
/% SCGLUTION MATRI X*/

/* 0.9321%/

/% 1.2€655%/

/% Col426%/

EXTLAB3CL:FCRMAT(PAGE +X(2C)A(15));
EXTLAB302: FORMAT(COLUMN{1)4X(10),A(41)}
EXTLAB302: FORMAT(COLUMN(1) 4 X(1C) sA(4€))
EXTLAE304: FORMAT(SKIP(2)yX(10),A(1E)};
EXTLAB20S:FCRVMAT(PACE,X(10),A(81));
EXTLAE306 sFCRMAT (SKIF(2),X(10),A(8)1)3
EXTLAB3CT:FCRMAT(SKIP(2)4X(08)4,A(10));
EXTLAB3CEZFCRVAT(COLUMNIL) 9X(10) 4A(241))3
EXTLABL2:FORMAT(COLUMN(1) 46 FILBLNK(10)));

H
’

66

MATI00140
MATIO00150
MATCN160
MAI CO17¢C
MATCC180

MAING?200
MAICO0210
MATNN?220
MAT CO230
MAIC2240
MAIC0O?80
MAIC0260
MAINO270
MAIQN280
MATO0290
MAIQ0220N
MAT C0310
MAICO320
MATICQ22Q
MATIN0240
MATI0D350
MAICC360
MATI0D370
MAT 00380
MAT CC3S0
MAICO4C0
MAIOC410
MAT00420
MATO042N
MATQO2440
MAT Q450
MAT CC4€C
MATC247N
MAICOQ480
MAIO0N4S0

|

IPBOO1I
IPBOO1I

IPBOO1I
IPBOO11I

/%
/%
/%
/%
/%
/%

EXTLAB12:FCRVMAT(CGLUMN(L) o7 FOLBLNK(10)44));
EXTLAEL7:FORMAT(COLUMN(1),41C F(1044));

0O THEN CC TO EXTLABE3;

O THEN CO TO EXTLABE3;
tXTLAB6S :IF(L1-NM2)== O THEN GC TC EXTLAREZ;

NZ

IF(N2=-1)=
EXTLAB64:IF (L2-1)=

FILE(FTCOFIL)EDIT(MLyM2,4L1 4L2 g NLyN2) (P {eXTL AY Y

{1 | S TR TR 1}

NU .
NCe
NCe
NC.
NC.
NG

JF
CF
LF
CF
CF
CF

eXTLABEE:IF(M1-N1)

EXTLABLLl:N=M1 ;

EXTLABSL:FLT FILE(FTC6FOLIECIT(CUMMDOT) (R
GCTC EXTLABZ;

EXTLALS3:PLT FILE(FTO6FCLIEDIT(DUMMGCE) (R{EXTLAB303));
GUTC EXTLABZ2;

EXTLABL4:PLT FILE(FTO6FCL)EDIT(DUMMGC4) (K(EXTLAB3CS1);

N=WVg

IF(V1=-M2)
EXTLABS3;

kCWS
CCLS
kCwS
ccLS
RCWS
CCLS

= 0 THFEN GG TO EXTLABILL1;
cXTLABE3:PLT FILE(FTO6FOL)EUIT(DUMMCCE) (RIEXTLARZ3L))
GOTO EXTLAB2;

OF
GF
CF
CF
0F
OF

CC I=1 TC MAX{(14N);

CET FILE(FTOSFOLIECIT((A(I, 1)
PUT FILE(FTO6FOL)IEDIT((A(J,1)
e XTLABTC:;

eND 3
EXTLAB8S:FORMAT(COLUMN(1) sF(LBLNK(1C),4));

PUT FILE(FTO6FCL)EDIT(DUMMCC2)(R(EXTLAB3CE));
GET FILE(FTOSFOL)ECIT((B(I)
PUT FILE(FTO6FOLIECIT((B(I)

A% /
ps/
X%/
X%/
g /
B* /

EXTLAB2C:LC K=1 TG NMAX(1,4N);
D=A(K,K)
IF(C)
EXTLAB4C:A(KyK)=140EC 3
EXTLAB50:CO J=1 TO MAX(1,N);

EXTLAB6O:A(J,K)=A(J,K)/D
ENC3;

IF(K=N)>= O THEN GC TC EXTLAEB130;
EXTLABBO :IK=K+1
DO I=IK TG MAX(IK4N)3;

EXTLABL20:A(Js1=A(Jy L)-(C*A(JyK))
ENC
ENC;
ENC;

= 0 THEN GO TC EXTLABZ200;

J=A(K,yI)

A(Ky1)=C.CEC

CC J=1 TC MAX(1,N);

tXTLAB30Z))3

Y

0 THEN Cu TO EXTLAEiQ;ELSE IF(M1-M2) > C THEN GC TO

CO J=1 TO MAX(EYL,N)II(R(EXTLABYZ)) ;
CO J=1 TC MAX(1yN)II(RCEXTLARL1T))3 MAICNT€N

DO I=1 TGO MAX({14N)))(R(EXTLABBY))
DO I=1 TO MAX(1,N)})(R(EXTLABR?Q))

MAT226NO
MATCNRTIA
MATCNR2 D
MAT CCE3C
MATCNrE4Q
MATIQQS50
MATICO5€6N
MATIONSTO
MAIN0580
MATCC590
MAT CO6NN
MATCOELN
MATOCé€é20
MATIONE2(
MATO0640
MAIONESN
MAICO66N
MAT0QOETT
MATI CCk80
MATICnécn
MATICO7CN
MATOOQT1D
MATINO72G
MAICOT 3"
MAICQ74"
MAT CO757

MATICCTTN
MATOCT7EC
MAT02790
MATOOROQ
H MAICORYIC
5 MAT COB2N
MAT CCe3cC
MAICCR4N
MATQN8SD
MAICC860
MATQOETO
MAION880
MATIOCRQC
MATCOGCO
MATICCE1C
MATQ0S20
MAICCG3n
MATI00G40
MAICC959
MATIC0960
MAICCI7N
MAI CCQf9
MAICCSSO

Appeiaix ¥ 67

EXTLABL3C:IK=N-1 3
DC K=1 TO MAX(14IK)3
EXTLABLl4C:11=K+1 3
CO I=11 TC MAX(I14N);
C=A(1,K) 3
A(I4K)=0.0EQ 3
EXTLABLTC:DC J=1 TC NAX(LsNI;
EXTLABLECIA(JK)I=A(JsKI=(C*A(J2I)) 3
END 3
END ;
ENC3
GLTO EXTLAB202;
EXTLAB200:PUT FILE(FTC6FOLJEDIT(DUMMOOL)(R(EXTLAB208));
GCTC EXTLAEZ2;
EXTLAB2C2:PUT FILE(FTO6FOL)EDIT(CUMMOO2) (RIEXTLAB30T));
DC I=1 T0O MAX(1l4N)3

IPBOO1I PUT FILE(FTOEFCLIEDIT((A(J,I) DO J=1 TC MAX(14N))) (RCEXTLABLT));

EXTLAB2C1:;
ENC
EXTLAE4QQ0:CC I=1 TC MAX(14N);
X(I)=C.0EQ ;3
DC K=1 TC MAX(1lyN);
EXTLAB2L:X(T)=X(I)+A(K s I)*B(K) ;
END 3
ENC
EXTLAB40L:PUT FILE(FTC6FOL)EDIT(DUMMCOS) (RIEXTLAB3C4));

I1PBOO1I PUT FILE(FTOEFOL)IECIT((X(I) DO I=1 TG MAX(1,N)}){(R(EXTLABBS));
IPBO0O8I EXTLAE2:STCH;

DISFLAY('STCP ') ;STCP;
ENC3

WARNING MESSACES

IPBO01I READ CR WRITE STATENMENT

PL/I ANC FCRTRAN RESULTS MAY DIFFER IN LINE
COTE,CC16,0C81,0C82,0116,40126

IPBO0O8I SERVICE SLBPROGRAMS

68

PL/I ANC FORTRAN RESLLTS MAY DIFFER IN LINE
clai

MAIClCED
MAIN1010
MAIO1020
MATIO1030
MAT 01040
MAIC1050
MATO01CéEC
MAIOQ1070
MA101080
MATI01090
MAIO01100
MAIO1110
MAIC1120
MAIC1130
MAIC1140
MATIO01150
MATIN1160
MAIOL1170
MAIO1180
MAIC1190
MAI 01200
MATIC1210
MAI01220
MATIO1230
MAIO1240
MAIO1250
MATIO01260
MAIOQ1270
MAIOl280
MATI C12¢C

Step 3. Execution of PL/I Program

A normal compile, 1link, and go run can be performed, with or without
the user's cataloged procedure. The following is a sample of the con-
trol cards when using a cataloged procedure:

//Ab JOB 2622,SMITH,MSGLEVEL=1

7/ EXEC PL1LFCLG

//SYSIN DD *

cea Card output from step 2: cards MAIOQ0010 through MAI01290
/%

//LKED,.SYSIN DD DSNAME=ﬁBLNK,DISP=OLD,UNIT=SYSDA C
// VOLUME=SER=XXXXXX

//GO.FT06F01 DD SYSOUT=A,DCB=(BLKSIZE=129,LRECL=125, RECFM=VA)
//GO.FTO5F01 DD *

N The seven FORTRAN data cards: DATAO0001 through DATAQ007

/ %

Appendix H 69

The output listed on FTO06F01 (the printer specified in the above con-

trol cards) should read as follows:

70

MATRIX A
4.2150 -1.2120 1.1050
=-2.1200 3.5050 -1.6320
1.1220 -1.3130 3.9860

MATRIX B
3.2160
1.2470
2.3456

A-INVERSE
0.2916 0.0833 -0.0467
0.1632 0.3836 0.1118
-0.0283 0.1029 0.3009

SOLUTION MATRIX
0.9321
1.2655
0.7429

Where more than one reference is given, DOUBLE PRECISION statemeNtececcececeasess 33
the first page number indicates the major DUMP SUDPrOgraMececcsccecssecsssscasssvassa 33
reference. DVCHK SUDPLOJLa@M.ceveseocecsscsescsascsese 33

actionS, LCPuceeccccceccscssanccnccsacacse 10 elements of the lanquage.iceeecececcceses 17
arithmetic eXpressSiONSe.ceccecccccccescacs 19 END statemenNteccececsecsccocacscccncccces 20
arithmetic IF statemenNtecceececececccenee 23 END FILE statement.ceceececececacenanease 4O
arrangement of arrays ih storag€eeeces... 14 ENTRY statement..ceeeacecsces teesascases 31
ASSIGN statemeNt.cecccsscccsancsscascnsces 23 EQUIVALENCE statement.icscecsceccccosseaes 28
assigned GO TO statemMeNt.ceecececaccacess 23 examples, coding, form of...ccececeeeces 15
assignment EXEC card optiONSecesssecscccscssccscess 593
StatementSececeeeeceaccacaccccacscnnas 21 executing the LCP..ieeececcssessoncsnees 52
statements, arithmetiCeeceececccsacees 21 executing the PL/I target program....... 54
statements, logiCaleececececccccecscesas 21 EXIT SUDPLOQraMecececsscsosssasscnsassses 33
explicit specification statements....... 27
BACKSPACE statemeNteceeccecccccaseseeass U0 expressions, arithmetic..cececccracceec.. 19
basic symbols, PL/I and FORTRAN expressions, logicale..cecececcccsnvensss 20
COrTeSPONdiNgecsaceanccacoaacaccacscaaass U3 EXTERNAL sStatemeNtececscssoncecscnssnanas 32
blanks Withinl WOrdSeseececccsescecccsccass 16
BLOCK DATA subprogramMecescececcecceceseass 33 factor, SCal€icacecccsoscscsccceccceccsncce 37
form of coding exampleS.cecececececnacass 15
form of LCP substitution names.....cec... 13
CALL StatemeNteceeecccescsasacnccscccancens 32 format item

character-string format iteéMecceceeecs.. 38 character-sStringecececececceeccccceasass 3%
code, h=forMatececscecanscscncnceosncacscnas 39 CONtrOlecececescececscosnscccscccnsnncss 39
coding examples, form Of..cecececacceees 15 generalizedececececsccscecseaccsnscssscs 39
COMMENTSeeanaacesesnaccaccccnscccasncsnee 16 hexadecimal.e eeeeeecenccccacncennnnnns 39
COMMON statemeNteceaecesccencescnscscacs 27 logicaleeceseeeececacencscncncnansnannass 38
common variables in EQUIVALENCE NUMECLiCesesesossncasccsncsacsscsssonssse 37

StateMeNteeeeesccsscesssnssssonancesance 29 FORMAT statemenNt.cecececessccssesscanseas 36
complex CONStaNtS.eeveccacecacscscnceass 18 FORTRAN programs to be converted,

computed GO TO statemeNteceeececeeeceaas 22 characteristiCSeececseecssccasansscsaase 10

conflicts, name, prevention Of.cceececes 13 FORTRAN and PL/I, corresponding basic

constants SYMDOLlS.ieeeeeeeeoessocorsenssseacnsaseas U3
COMPlEeXeewecseasesnnosvnascsnsscncsanansee 18 FORTRAN and PL/I, corresponding
hexadeciMaleceeeoceasasncanccsnscsasss 19 FUNCEiONSeeeeessanecsasncscscessacsaeosas UU
integereceaeceacaaan e) FUNCTION SUbpProgramsS.ecsseascsceses eeeees 30
literaleecececececccccscacacsacscaacsnsass 19 functions
10giCaleceacececaccanccncasascanacscas 19 PL/I and FORTRAN correspondinge..e.... U4
IT€@leeanaccaccsccncancsssaccsccacsnnas 18 StatemenNtececenseccscasccccocnscnnsaasss 30

CONTINUE sStatemeNtececcececsascccscseccnsess 25 LBLNKtecaeooaoooeecasnccsnscccsnsnsccss O

control card OptiONS.eccececcccccacecass 53

control cardsS,LCPecacescccacccascennaaas Ol general problems in converting to PL/T.. 13

control format iteMSececeeccececcacasnas 39 generalized formit iteM..ececeesecaecssss 38
control informatiONescaceeceececsncccceaces 9 GO TO statement

control statemenNtSeccececceccsecscconcnceaes 22 aSSigned.seececccencsserseccannncscanss 23
CONVEILSiON OUtPUt.eceeeececccescccscascaess U1 COMPUtEAaaeceeeeseenaacsccsnascssswece 22
CONVEerSiON ProbleMSececcceccceccncsccccnns . 13 unconditionaliececeeecacesecnacannanes 22
corresponding basic symbols, PL/I and
FORTRANeecoceaosscsasasancsncssncsonnoncce U3 hexadecimal constantSeecceacsncasesas eees 19
corresponding functions, PL/I and hexadecimal format item..ceceeecceceasess 39
FORTRAN«eecoeascscaccacsnennconnccncanes Ui h-format CodE.eeeeencceencocaccconcans .. 39

creating the load module,diskeeeecececceas 49
creating the load module,tap€eececesceasss 50 IF statement, arithmetiC.ciceeeciaceaase 23

IF statement, logical........... ceseeees 24
data, literaleccecsceeacssaccscssccasesacsas 39 IMPLICIT statemenNteececececaascsssasannaaa 26
DATA initialization statemenNt.cececececes. 33 information, CONtrol...ccececcecccnsonscese 9
data set terminologyececcscsccsccccaceaes 15 initialization statement, DATA.,......... 33
DIMENSION StatemeNtecececeececcsccacccacanas 27 input/output sStatementSeceeececoaseessss 3l
disk pack,pPrograms ONeececeesceccssacccsesas 49 character-string format item....e.e... 38
distribution of the LCP...ceccecaacees 8,49 control format itemMS.ceceevcococesessess 39
DO StateMeNtececessccasccceccncancacasnse 24 generalized format itemMeceeeeereeecas. 38

71

hexadecimal format iteMecvescccecncaaes 39
integer constantSeesecccccccaseasscaccsss 17

LCP
ACti0ONSeeecacaccasasscsccscecnsscanscase 10
CONtrol CerdSesaccsscessccssccccanaseancs DU
distributiONeceesasvecsasascscsscanse 8'“9
€XEeCUti1O0Neeeascssancsesaccscsncsncsnacee D2
general descriptiONececececccancscsncasss 9
notation used in this document.ceeceece. 11
output 1liStiNgSeeeceeccscosncccaccccceas 10
PErfOrManCeecececcccaceasscacsncscncncasns 11

CEStriCtiONSeeeecnsccnocssancssassaceas 47

substitution names, form Of.ccecececcecess 13
language
elements Ofccececerscnscccscccncccnace 17
OUtPULeveecccecccsacncsasassscscnsannvans 8
SOULCCaeeseacscacsccnsestscncsaacscncsnnnse /
LBLNKeceosoeoseseasscacssscccnsccasananas 91
1iStinNgeeececececccsseascnsacsasccaccscsananas U1
literal consStaNtSeceecceccccaceccascancciasae 19
literal dat@eeeceacceccacsossscncsaccccncse 39
load module,creating the diSKeeeeaeaasoaas U9
load module,creating the tap€eeasscsecsss 50
logical constantSecesceacescccsccacssesss 19
logical eXpPreSSiONSececscececcccassccsases 20
logical format iteMececcecscccssssccssas 38
logical IF statemeNtececscceccasccseaneas 24

mathematical function subprograms.... 13,44
MESSAJES eeaannccocascsascnsansosaancacneseae 55
MF Paececesaansecacsesesncscscscscacsccanceaseas 8

MV e eoeacacnansasnsossanssnscscacsccsscas 8

name conflicts, prevention of.cecceece.. 13
notation used in this documenteeccecsceess 11
NOZERODIVIDE.:caeeseosaacscsaascssaansasnsnanese 17
numeric format iteMSeeacesecsacccccancess 36

operating proceduUreSceeccceccscssascassss 52

options

"~ CONtrol CArdeeececescecsccsancaccsscacass 53
EXECeeieeeaneeennancnvonsocnannnnsnsne D3

output
CONVEISiONeceeecacccccncsncnanccnnasss 41

1angUag@eesvecacsnacscsnsascnsscnsaanas §

1iStiNgeseeaaccconcansccscssacnsanaanse U1
StatemeNtSeecececsacoccsncaancecaccccsanaae 3
OVERFL SUbDPrograMeeccececccssceccecsssacans 33

PAUSE statemeNtecececcecacscecccasannass 25
PCPeccceceacacsccacenconcsncssnnccscssassannnse 8
PDUMP sSubprogramecceccceccesoscessasessases 33
performance 0f the LCPeccececcccaceccsase 11
PL/I and FORTRAN

.corresponding functionNSeececcececccaceass Ul

corresponding basic symbolSe.ececeecesecesa 43
PL/I target program exeCutiON.sceecsesss 54
predefined specificatiONescecsscccscceseass 26
prevention of name conflicCtSesecacsanssas 13
PRINT statement.cecececcecccnccceccanenscs 36
problems, general CoNverSiON.e.eecececesse 13
Progral UNiteeececececcccccceaceccencsccancas 17
programs ON diSKeeeceoseccoocscncecsnnsnesa 49
PLOJrams ON tAPCeccecesceacsscnancsacses 50
PUNCH statemeNtecececceccccccscanscnacess 36

72 Index

READ statemeNt.iciacccecacessscsaccnncnsnse
real CONStANtSieesacecscstossoansansoosnss
restrictions,
RETURN statemenNt.cececevsesccccsccacsseccs
REWIND statemenNteececcecccscccocssnnaacas

LCP...'QIl'...l......‘l'.-

Sample PrograMeccescesaccscsccsnsanssas 8,
scale factor.l.l.....!-..ll....l....!...
Service SUbprogramSeecceessssacsssans
SLITE SUDPrOgramMeccsccesceoesssccscanascacs
SLITET SUDPrograMecececscceseacssascsosos
SOULCEe 1laNgUAgE cesenec-scacasososasannnns
specification, predefined.c.cecececceces
specification statementS.eeccescssacanae
specification statements, explicit..cc..
statement
fUNCtioNSecieeeecesncecenesecnncnannns
NUMDErSecesescssscccsssesscassacncanse
arithmetic IF..ceeececncccscocscncsaas
ASSIGNeeeeaoeassesscsccssasosccccncasscs
assigned GO TOuieeeveeneecacencanonnsan
BACKSPACE: caeseocsccosocecccacsaaseseas
CALL:etssaasecsecacneccoenanssssanassas
COMMON: e ceaeecccccncsccsnsossscscsnnsnsne
COMPUtEd GO TOieeaceaeaconaocancnnnnas
CONTINUE e eaeecaaaconsaseasssasacasecas
)
DATA initializatioN.cecececeeccaacnans
DIMENSTION:eeoeecceccosncsooasacosccsanasna
DOeececacccocctasacacsacccsancocscsceannanscs
DOUBLE PRECISIONe.eesesasscacsscsnssona
ENDveeeeroaseansseccaccccccassacsasnsas
END FILE.uceescoasceccaoscscansncasaansas
B O
EQUIVALENCE:eceeeesasaccocacacscsasnacans
EXTERNAL ueueensocoaasseocsncssssansocsna
FORMAT ceeceecoossvasssasassssscrsansconns
FORMAT, character-string format itenm..
FORMAT, control format itemS.eeccacecee
FORMAT, generalized format iteR.e......
IMPLICTIT e e aceccencacacncnsosonannssasnaa
10gic3]l IF.ececcocccsossacsrsannnnsanas
PAUSE.ceeeeccannnsacnasn ceecsasccosnacae
PRINT.eeee.. P
PUNCHecooeoooseescacacsasacasanansaanas

READ:eceitieannncssassoscocaceascsnnoannas

RETURN:ceeeecaasocnnsoonscasncncancacsns
REWINDeeieeseeaasocncaannonsaansosasosnnas
STOPeeeeeeeeecsacaacaancaannanas ceeenas
3
statements,
aSSignMmeNteceeeeceeececsacssosaceccacncas
assignment, arithmetiCeecesesceseanans
assignment, logical.icceecvscccacnnnanns
CONErOleceeeveececnsaassosasnascansaascs
specificatioNeceeeeecieecccecncnaanenn
statement NUMDErS..ieescaccacsscnnnnsnca
STOP statemenNteccesriaccsacsrsacccnacnccena
storage, arrangement of arrays iNeeecee.
subprogranm
BLOCK DATAccveseanccscsnvscacsososasanscncoa
DUMP . e ceceaaencocccascncsscsonsonnsanans
DVCHK...... Geceesccecsaercttranaananan
EXITe e eaeaneeaenosesssasseattsansancens
PDUMP. e eceeeseceeconscsasanssasssacaneas

SLITEeeeeeacceascssaacscncascssnsnans cenee

SLITETeececeenansansnas
subprogranms

33,

34
18
u7
31
40

62
37
15
33
33

7
26
26
27

30
17
23
23
23
40
32
27
22
25
33
33
27
24
33
26
40
31
28
32
36
38
39
38
26
24
25
36
36
34
31
39
25
36

21
21
21
22
26
17
25
14

33
33
33
33
33
33

FUNCTIONeeoeooseaccssscscsnccascassanses 30 terminology, data set.cieecicecencasanas 15
mathematical function,conversiofeeses.. 44 truncation,REAL t0 INTEGEReeceecsseceaonas 21
SeILViCCavseacscsscancsansnveannscnscssse 33
SUBROUTINE . cavcesccscecscsnsscsnsecncacs 31
SUBROUTINE SUbpProgramS..ccccsccsssecases 31 unconditional GO TO statemeNt.sesccesens 22
subscripted variableSccecesscsscecscance 19 using the function LBLNKesewsoseosaooosss 51
substitution names, LCP, fOLM Of ceececes 13

symbols, basic, PL/I and FORTRAN variables, subcripte@ecccecesceccacssaas 19
COrreSpONndiNge seeevescscssaassanensass 43 variables,common,in
System requiremenNtSeceescacesscssecccncaee 8 EQUIVALENCE statemeNticececescecsansess 29

tape, Programs ONececcseassascassanssscacse D0 words, blanks withiDieeeeoeeacoerccaeees 16
target program exeCUtiONeeceeccecccaveaaas 54 WRITE statemenNte.ceccecsicnceccecsnensncaas 36

73

GC33-2002-2

TSI

International Business Machines Corporation

Data Processing Division

1133 Westchester Avenue, White Plains, New York 10604
[U.S.A. only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

ddT 1I/1d-03-A1 NVELIOd

"¥°S°N Ul pa3julad

2-200T-€EDD

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26.1
	26.2
	26
	27
	28.0
	28.1
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	xBack

